Load Balancing: Toward the Infinite Network and Beyond

  • Javier Bustos-Jiménez
  • Denis Caromel
  • José M. Piquer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4376)


We present a contribution on dynamic load balancing for distributed and parallel object-oriented applications. We specially target peer-to-peer systems and their capability to distribute parallel computation. Using an algorithm for active-object load balancing, we simulate the balance of a parallel application over a peer-to-peer infrastructure. We tune the algorithm parameters in order to obtain the best performance, concluding that our IFL algorithm behaves very well and scales to large peer-to-peer networks (around 8,000 nodes).


Load Balance IEEE Computer Society Processing Capacity Active Object Parallel Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Transactions on Software Engineering 14(2), 141–154 (1988), doi:10.1109/32.4634CrossRefGoogle Scholar
  2. 2.
    Schollmeier, R.: A definition of peer-to-peer networking for the classification of peer-to-peer architectures and applications. In: 2001 International Conference on Peer-to-Peer Computing (P2P2001), Department of Computer and Information Science Linkopings Universitet, Sweden, August 2001, IEEE Computer Society Press, Los Alamitos (2001), Google Scholar
  3. 3.
    Bustos-Jiménez, J., et al.: Balancing active objects on a peer to peer infrastructure. In: Proceedings of the XXV International Conference of the Chilean Computer Science Society (SCCC 2005), Valdivia, Chile, November 2005, pp. 109–115. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  4. 4.
    Oasis Group at INRIA Sohpia-Antipolis: Proactive, the java library for parallel, distributed, concurrent computing with security and mobility. (2002),
  5. 5.
    dos Santos, L.P.P.: Load distribution: a survey.
  6. 6.
    Shivaratri, N.G., Krueger, P., Singhal, M.: Load distributing for locally distributed systems. Computer 25(12), 33–44 (1992), doi:10.1109/2.179115CrossRefGoogle Scholar
  7. 7.
    Roussopoulos, M., Baker, M.: Practical load balancing for content requests in peer-to-peer networks. The Computing Research Repository, vol. cs.NI/0209023 (2002)Google Scholar
  8. 8.
    Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. Journal of the ACM 46(5), 720–748 (1999), doi:10.1145/324133.324234zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Berenbrink, P., Friedetzky, T., Goldberg, L.A.: The natural work-stealing algorithm is stable. In: IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 178–187. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  10. 10.
    Bustos-Jiménez, J., et al.: Load information sharing policies in communication-intensive parallel applications (To appear). In: Corchado, F.F.R., Larios-Rosillo, V., Unger, H. (eds.) ISSADS. LNCS, Springer, Heidelberg (To appear, 2006)Google Scholar
  11. 11.
    Ratnasamy, S., et al.: A scalable content-addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, San Diego, California, United States, pp. 161–172. ACM Press, New York (2001), doi:10.1145/383059.383072CrossRefGoogle Scholar
  12. 12.
    Godfrey, B., et al.: Load balancing in structured p2p systems. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 68–79. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Montresor, A., Meling, H., Babaoglu, Ö.: Messor: Load-balancing through a swarm of autonomous agents. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS (LNAI), vol. 2530, pp. 125–137. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Cao, J.: Self-organizing agents for grid load balancing. In: GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04), Washington, DC, USA, pp. 388–395. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  15. 15.
    Barak, A., Guday, S., Wheeler, R.G.: The MOSIX Distributed Operating System: Load Balancing for UNIX. Springer, New York (1993)zbMATHGoogle Scholar
  16. 16.
    Mitzenmacher, M.: How useful is old information? IEEE Transactions on Parallel and Distributed Systems 11(1), 6–20 (2000), doi:10.1109/71.824633CrossRefMathSciNetGoogle Scholar
  17. 17.
    Caromel, D.: Toward a method of object-oriented concurrent programming. Communications of the ACM 36(9), 90–102 (1993), doi:10.1145/162685.162711CrossRefGoogle Scholar
  18. 18.
    Baduel, L., Baude, F., Caromel, D.: Efficient, flexible, and typed group communications in java. In: Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle, pp. 28–36. ACM Press, New York (2002)CrossRefGoogle Scholar
  19. 19.
    Baude, F., et al.: Communicating mobile active objects in java. In: Williams, R., et al. (eds.) High-Performance Computing and Networking. LNCS, vol. 1823, pp. 633–643. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Litzkow, M.L.M., Mutka, M.: Condor - a hunter of idle workstations. In: Proc. of 8th International Conference on Distribuited Computing Systems, pp. 104–111 (1998)Google Scholar
  21. 21.
    Domingues, P., Marques, P., Silva, L.M.: Resource usage of windows computer laboratories. In: 34th International Conference on Parallel Processing Workshops (ICPP 2005 Workshops), Oslo, Norway, 14 -17 June 2005, pp. 469–476. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  22. 22.
    Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: CCGRID, pp. 73–80. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  23. 23.
    Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource management for high throughput computing. In: HPDC ’98: Proceedings of the The Seventh IEEE International Symposium on High Performance Distributed Computing, Washington, DC, USA, p. 140. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  24. 24.
    Sun Microsystems, RMI Architecture and Functional Specification.
  25. 25.
    Nester, C., Philippsen, M., Haumacher, B.: A more efficient RMI for Java. In: JAVA ’99: Proceedings of the ACM 1999 conference on Java Grande, San Francisco, California, United States, pp. 152–159. ACM Press, New York (1999), doi:10.1145/304065.304117CrossRefGoogle Scholar
  26. 26.
    Vyas, D., Subhlok, J.: Volunteer computing on clusters. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp. 161–176. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Epema, D., et al.: On grid performance evaluation using synthetic workloads. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp. 227–247. Springer, Heidelberg (2007)Google Scholar
  28. 28.
    Paul, P.: Seti @ home project and its website. Crossroads 8(3), 3–5 (2002), doi:10.1145/567162.567164Google Scholar
  29. 29.
    Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04), Washington, DC, USA, pp. 4–10. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  30. 30.
    Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, Portland, OR, USA, pp. 163–170. ACM Press, New York (2000)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Javier Bustos-Jiménez
    • 1
    • 2
    • 3
  • Denis Caromel
    • 2
  • José M. Piquer
    • 1
  1. 1.Departamento de Ciencias de la Computación, Universidad de Chile. Blanco Encalada 2120, SantiagoChile
  2. 2.INRIA Sophia-Antipolis, CNRS-I3S, UNSA. 2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis CedexFrance
  3. 3.Escuela de Ingeniería Informática. Universidad Diego Portales Av. Ejercito 441, SantiagoChile

Personalised recommendations