Advertisement

Advance Reservation Policies for Workflows

  • Henan Zhao
  • Rizos Sakellariou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4376)

Abstract

Advance reservation of resources has been suggested as a means to provide a certain level of support that meets user expectations with respect to specific job start times in parallel systems. Those expectations may relate to a single job application or an application that consists of a collection of dependent jobs. In the context of Grid computing, applications consisting of dependent tasks become increasingly important, usually known as workflows. This paper focuses on the problem of planning advance reservations for individual tasks of workflow-type of applications when the user specifies a requirement only for the whole workflow application. Two policies to automate advance reservation planning for individual tasks efficiently are presented and evaluated.

Keywords

Directed Acyclic Graph Critical Path Precedence Constraint Individual Task Spare Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhusaini, A.H., Prasanna, V.K., Raghavendra, C.S.: A Unified Resource Scheduling Framework for Heterogeneous Computing Environments. In: 8th Heterogeneous Computing Workshop (HCW) (1999)Google Scholar
  2. 2.
    Beaumont, O., Boudet, V., Robert, Y.: The Iso-Level Scheduling Heuristic for Heterogeneous Processors. In: Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-Based Processing (PDP2002) (extended version available as Research Report RR2001-22, LIP, ENS Lyon, France) (2002)Google Scholar
  3. 3.
    Berriman, G.B., et al.: Montage: A Grid Enabled Image Mosaic Service for the National Virtual Observatory. In: The Conference Series of Astronomical Data Analysis Software and Systems XIII (ADASS XIII), vol. 314 (2004)Google Scholar
  4. 4.
    Blythe, J., et al.: Resource Allocation Strategies for Workflows in Grids. In: IEEE International Symposium on Cluster Computing and the Grid (CCGrid ), IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  5. 5.
    Boloni, L., Marinescu, D.C.: Robust scheduling of metaprograms. Journal of Scheduling 5, 395–412 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cao, J., Zimmermann, F.: Queue Scheduling and Advance Reservation with COSY. In: Proceedings of 18th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, USA, April 2004, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  7. 7.
    Casanova, H., et al.: Heuristics for scheduling parameter sweep applications in Grid environments. In: 9th Heterogeneous Computing Workshop (HCW’00) (2000)Google Scholar
  8. 8.
    Foster, I., et al.: A Distributed Resource Management Architecture that Supports Advance Reservations and Co-Allocation. In: Proceedings of the International Workshop on Quality of Service (1999)Google Scholar
  9. 9.
    Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel Job Scheduling — A Status Report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Jackson, D., Snell, Q., Clement, M.: Core Algorithms of the Maui Scheduler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Kwok, Y.-K., Ahmad, I.: Dynamic Critical-Path Scheduling: An Effective Technique for Allocating Task Graphs to Multiprocessors. IEEE Transactions on Parallel and Distributed Systems 7(5), 506–521 (1996)CrossRefGoogle Scholar
  12. 12.
    Kwok, Y.-K., Ahmad, I.: Static Scheduling Algorithms for Allocating Directed Task Graphs. ACM Computing Surveys 31(4), 406–471 (1999)CrossRefGoogle Scholar
  13. 13.
    Lawson, B., Smirni, E.: Multiple-Queue Backfilling Scheduling with Priorities and Reservations for Parallel Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Lawson, B., Smirni, E., Puiu, D.: Self-adapting Backfilling Scheduling for Parallel Systems. In: Proceedings of the 2002 International Conference on Parallel Processing (ICPP 2002), Vancouver, B.C, August 2002, pp. 583–592 (2002)Google Scholar
  15. 15.
    Lifka, D.A., Henderson, M.W., Rayl, K.: Users Guide to the Argonne SP Scheduling System. Technique Report ANL/MCS-TM-201, Argonne National LaboratoryGoogle Scholar
  16. 16.
    Load Sharing Facility platform. http://www.platform.com/products/LSF/
  17. 17.
    MacLaren, J.: Advance Reservations: State of the Art. In: Global Grid Forum 9 (GGF9), Scheduling and Resource Management Workshop, Chicago, USA (October 2003)Google Scholar
  18. 18.
    MacLaren, J., et al.: Towards Service Level Agreement Based Scheduling on the Grid. In: Workshop on Planning and Scheduling for Web and Grid Services (in conjunction with ICAPS-04), June 3 -7, 2004, pp. 100–102 (2004)Google Scholar
  19. 19.
    Mandal, A., et al.: Scheduling Strategies for Mapping Application Workflows onto the Grid. In: IEEE International Symposium on High Performance Distributed Computing (HPDC 2005), IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  20. 20.
    Min, R., Maheswaran, M.: Scheduling Co-Reservations with Priorities in Grid Computing Systems. In: IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), ACM Press, New York (2002)Google Scholar
  21. 21.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, Predictability, Workloads, and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Transactions on Parallel and Distributed Systems 12(6), 529–543 (2001)CrossRefGoogle Scholar
  22. 22.
    Radulescu, A., van Gemund, A.J.C.: Low-Cost Task Scheduling for Distributed-Memory Machines. IEEE Transactions on Parallel and Distributed Systems 13(6), 648–658 (2002)CrossRefGoogle Scholar
  23. 23.
    Sakellariou, R., Zhao, H.: A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems. In: Proceedings of 13th Heterogeneous Computing Workshop (HCW 2004), Santa Fe, New, Mexico, 26 -30 April (2004)Google Scholar
  24. 24.
    Sakellariou, R., Zhao, H.: A low-cost rescheduling policy for efficient mapping of workflows on grid systems. Scientific Programming 12(4), 253–262 (2004)Google Scholar
  25. 25.
    Schwiegelshohn, U., Wieder, P., Yahyapour, R.: Resource Management for Future Generation Grids. In: Getov, V., Laforenza, D., Reinefeld, A. (eds.) Future Generation Grids. CoreGrid, Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architecture. IEEE Transactions on Parallel and Distributed Systems 4(2), 175–187 (1993)CrossRefGoogle Scholar
  27. 27.
    Skonira, J., et al.: The EASY - LoadLeveler API Project. In: Feitelson, D.G., Rudolph, L. (eds.) Job Scheduling Strategies for Parallel Processing. LNCS, vol. 1162, pp. 41–47. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  28. 28.
    Smith, W., Foster, I., Taylor, V.: Scheduling with Advanced Reservations. In: Proceedings of International Parallel and Distributed Processing Symposium (IPDPS), May 2000, pp. 127–132 (2000)Google Scholar
  29. 29.
    Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems 13(3), 260–274 (2002)CrossRefGoogle Scholar
  30. 30.
    Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of Scientific Workflows in the ASKALON Grid Environment. SIGMOD Record 34(3) (2005)Google Scholar
  31. 31.
    Yarmolenko, V., Sakellariou, R.: An Evaluation of Heuristics for SLA Based Parallel Job Scheduling. In: 3rd High Performance Grid Computing Workshop (in conjunction with IPDPS 2006), IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  32. 32.
    Zhao, H., Sakellariou, R.: A Low-Cost Rescheduling Policy for Dependent Tasks on Grid Computing Systems. In: Dikaiakos, M.D. (ed.) AxGrids 2004. LNCS, vol. 3165, pp. 21–31. Springer, Heidelberg (2004)Google Scholar
  33. 33.
    Zhao, H., Sakellariou, R.: An Experimental Investigation into the Rank Function of the Heterogeneous Earliest Finish Time Scheduling Algorithm. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Henan Zhao
    • 1
  • Rizos Sakellariou
    • 1
  1. 1.School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PLUK

Personalised recommendations