Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 720))

Abstract

The challenge of dark matter may be addressed in two ways; by studying the confrontation of structure formation with observation and by direct and indirect searches. In this review, I will focus on those aspects of dark matter that are relevant for understanding galaxy formation, and describe the outlook for detecting the most elusive component, non-baryonic dark matter. Galaxy formation theory is driven by phenomenology and by numerical simulations of dark matter clustering under gravity. Once the complications of star formation are incorporated, the theory becomes so complex that the brute force approach of numerical simulations needs to be supplemented by incorporation of such astrophysical processes as feedback by supernovae and by active galactic nuclei. I present a few semi-analytical perspectives that may shed some insight into the nature of galaxy formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Seljak, Phys. Rev. D 71, 103515 (2005).

    Article  ADS  Google Scholar 

  2. L. Boyle, P. Steinhardt and N. Turok, Phys. Rev. Lett. 96, 111301 (2006), astro-ph/0507455 (2005).

    Google Scholar 

  3. M. Blanton et al., ApJ 592, 819 (2003).

    Article  ADS  Google Scholar 

  4. J. Peacock et al., Nature 410, 169 (2001).

    Article  ADS  Google Scholar 

  5. H. Dahle, ApJ 653, 954 (2006), astro-ph/0608480 (2006).

    Google Scholar 

  6. C. Heymans et al., MNRAS, 361, 160 (2005).

    Article  ADS  Google Scholar 

  7. I. McCarthy et al., MNRAS in press, astro-ph/0609314 (2006).

    Google Scholar 

  8. D. Spergel et al., ApJ in press, astro-ph/0603449 (2006).

    Google Scholar 

  9. W. Percival et al., ApJ 657, 51 (2007), astro-ph/0608635 (2006).

    Google Scholar 

  10. H. Eriksen et al., ApJ 656, 641 (2007), astro-ph/06088.

    Google Scholar 

  11. J. Kristiansen et al., preprint astro-ph/0608017.

    Google Scholar 

  12. G. Fogli et al., preprint astro-ph/0608060.

    Google Scholar 

  13. P. Hopkins et al., ApJS 163, 1 (2006).

    Article  ADS  Google Scholar 

  14. M. Gasperini and N. Nicotri, Phys. Lett. B 633, 155 (2006), hep-th/0511039 (2005).

    Google Scholar 

  15. A. Riazuelo et al., preprint astro-ph/0601433 (2005).

    Google Scholar 

  16. B. Freivogel et al., JHEP 0603, 039 (2006), hep-th/0505232 (2005).

    Google Scholar 

  17. C. Danforth, J. Shull, J. Rosenberg and J. Stocke, ApJ 640 716 (2006) astro-ph/0508656 (2005).

    Google Scholar 

  18. F. Nicastro et al., ApJ 629, 700 (2005).

    Article  ADS  Google Scholar 

  19. A. Klypin, H. Zhao and R. Somerville, ApJ 573, 597 (2002).

    Article  ADS  Google Scholar 

  20. C. Lintott, I. Ferreras and O. Lahav, ApJ 648, 826 (2006), astro-ph/0512175 (2005).

    Google Scholar 

  21. M. Creze et al., A&A 426, 65 (2004).

    Article  ADS  Google Scholar 

  22. M. Walker and M. Wardle, ApJ 498L, 125 (1998).

    Article  ADS  Google Scholar 

  23. A. Lawrence, MNRAS 323, 147L (2001).

    Article  ADS  Google Scholar 

  24. K. Adelberger, C. Steidel, A. Shapley and M. Pettini, ApJ 584, 45 (2003).

    Article  ADS  Google Scholar 

  25. V. Springel and L. Hernquist, MNRAS 339, 289 (2003).

    Article  ADS  Google Scholar 

  26. M. Oguri et al., ApJ 632, 8410 (2005).

    Article  Google Scholar 

  27. R. Overzier et al., ApJ in press, astro-ph/06011223 (2006).

    Google Scholar 

  28. M. Weinberg and N. Katz, ApJ 580, 627 (2002).

    Article  ADS  Google Scholar 

  29. O. Valenzuela and A. Klypin, MNRAS 345, 406 (2003).

    Article  ADS  Google Scholar 

  30. E. Athanassoula, IAU Symposium 220, eds. S.D. Ryder, D.J. Pisano, M.A. Walker and K.C. Freeman. San Francisco: Astronomical Society of the Pacific (2004), p. 273.

    Google Scholar 

  31. A. Sandage, A&A 161, 89 (1986).

    ADS  Google Scholar 

  32. R. Larson, MNRAS 218, 409L (1986).

    ADS  Google Scholar 

  33. W. Mathews et al., ApJ 634, L137 (2005).

    Article  ADS  Google Scholar 

  34. J. Silk, MNRAS 343, 249 (2003).

    Article  ADS  Google Scholar 

  35. R. Kennicutt, ApJ 498, 541 (1998).

    Article  ADS  Google Scholar 

  36. A. Slyz, J. Devriendt, G. Bryan and J. Silk, MNRAS 356, 735 (2005).

    Article  Google Scholar 

  37. J. Barnes, MNRAS 350, 798 (2004).

    Article  ADS  Google Scholar 

  38. H. Hoekstra, B. Hsieh, H. Yee, H. Lin and M. Gladders, ApJ 235, 73 (2005).

    Article  ADS  Google Scholar 

  39. C. Saxton, G. Bicknell, R. Sutherland and S. Midgley, MNRAS 359, 781 (2005).

    Article  ADS  Google Scholar 

  40. J. Silk, MNRAS 364, 1337 (2005).

    Article  ADS  Google Scholar 

  41. J. Silk and M. Rees, A&A 331L, 1 (1998).

    ADS  Google Scholar 

  42. D. Croton et al., MNRAS 365, 11 (2006).

    Article  ADS  Google Scholar 

  43. R. Bower et al., MNRAS 370, 645 (2006).

    ADS  Google Scholar 

  44. C. Martin, ApJ, 621, 227 (2005).

    Article  ADS  Google Scholar 

  45. R. Morganti, C. Tadhunter and T. Oosterloo, A&A 444, L9 (2005).

    Google Scholar 

  46. G. Angus and H. Zhao, preprint astro-ph/0608580 (2006).

    Google Scholar 

  47. T. Goerdt et al., Mon. Not. Roy. Astron. Soc. 375, 191 (2007), astro-ph/0608495 (2006).

    Google Scholar 

  48. R. Metcalf, ApJ 622, 72 (2005).

    Article  ADS  Google Scholar 

  49. R. Sheth and G. Tormen, MNRAS 329, 61 (2002).

    Article  ADS  Google Scholar 

  50. F. van den Bosch, ApJ 576, 21 (2002).

    Article  ADS  Google Scholar 

  51. R. Wechsler et al., ApJ 568, 52 (2002).

    Article  ADS  Google Scholar 

  52. S. Mashchenko, H. Couchman and J. Wadsley, Nature 442, 539 (2006).

    Article  ADS  Google Scholar 

  53. K. Holley-Bockelmann, M. Weinberg and N. Katz, MNRAS 363, 991 (2005).

    Article  ADS  Google Scholar 

  54. T. Di Matteo, V. Springel and L. Hernquist, Nature 433, 604 (2005).

    Article  ADS  Google Scholar 

  55. P. van Dokkum and R. van der Marel, ApJ. 655, 30 (2007), astro-ph/0609587 (2006).

    Google Scholar 

  56. C. Baugh et al., MNRAS 356, 1191 (2005).

    Article  ADS  Google Scholar 

  57. D. Akerib et al., PRL 96, 011302 (2006).

    Article  ADS  Google Scholar 

  58. C. Boehm, P. Fayet and J. Silk, PRD 69, 101302 (2004).

    Article  ADS  Google Scholar 

  59. K. Freese, P. Gondolo and H. Newburg, PRD 71, 043516 (2005).

    Article  ADS  Google Scholar 

  60. J. Silk, K. Olive and M. Srednicki, PRL 55, 257 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silk, J. (2007). Galaxy Formation and Dark Matter. In: Papantonopoulos, L. (eds) The Invisible Universe: Dark Matter and Dark Energy. Lecture Notes in Physics, vol 720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71013-4_4

Download citation

Publish with us

Policies and ethics