Advertisement

On the Direct Detection of Dark Matter

  • John Vergados
Part of the Lecture Notes in Physics book series (LNP, volume 720)

Abstract

Various issues related to the direct detection of supersymmetric dark matter are reviewed. Such are: 1) Construction of supersymmetric models with a number of parameters, which are constrained from the data at low energies as well as cosmological observations. 2) A model for the nucleon, in particular the dependence on the nucleon cross section on quarks other than u and d. 3) A nuclear model, i.e. the nuclear form factor for the scalar interaction and the spin response function for the axial current. 4) Information about the density and the velocity distribution of the neutralino (halo model). Using the present experimental limits on the rates and proper inputs in 3)-4) we derive constraints in the nucleon cross section, which involves 1)-2). Since the expected event rates are extremely low we consider some additional signatures of the neutralino nucleus interaction, such as the periodic behavior of the rates due to the motion of Earth (modulation effect), which, unfortunately, is characterized by a small amplitude. This leads us to examine the possibility of suggesting directional experiments, which measure not only the energy of the recoiling nuclei but their direction as well. In these, albeit hard, experiments one can exploit two very characteristic signatures: a)large asymmetries and b) interesting modulation patterns. Furthermore we extended our study to include evaluation of the rates for other than recoil searches such as: i) Transitions to excited states, ii) Detection of recoiling electrons produced during the neutralino-nucleus interaction and iii) Observation of hard X-rays following the de-excitation of the ionized atom.

Keywords

Dark Matter Direct Detection Light Supersymmetric Particle Nuclear Recoil Nuclear Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hanary et al., Astrophys. J. 545, L5 (2000); J.H.P Wu et al., Phys. Rev. Lett. 87, 251303 (2001); M.G. Santos et al., Phys. Rev. Lett. 88, 241302 (2002).Google Scholar
  2. 2.
    P.D. Mauskopf et al., Astrophys. J. 536, L59 (2002); S. Mosi et al., Prog. Nuc.Part. Phys. 48, 243 (2002); S.B. Ruhl al, astro-ph/0212229 and references therein.Google Scholar
  3. 3.
    N.W. Halverson et al., Astrophys. J. 568, 38 (2002); L.S. Sievers et al., astro-ph/0205287 and references therein.Google Scholar
  4. 4.
    G.F. Smoot et al. (COBE Collaboration), Astrophys. J. 396, L1 (1992).CrossRefADSGoogle Scholar
  5. 5.
    A.H. Jaffe et al., Phys. Rev. Lett., 86, 3475 (2001).CrossRefADSGoogle Scholar
  6. 6.
    D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  7. 7.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).CrossRefADSGoogle Scholar
  8. 8.
    G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267, 195 (1996).CrossRefADSGoogle Scholar
  9. 9.
    D.P. Bennett et al., Phys. Rev. Lett. 74, 2967 (1995).Google Scholar
  10. 10.
    R. Bernabei et al., Phys. Lett. B 389, 757 (1996).CrossRefADSGoogle Scholar
  11. 11.
    R. Bernabei et al., Phys. Lett. B 424, 195 (1998).CrossRefADSGoogle Scholar
  12. 12.
    A. Benoit et al., [EDELWEISS collaboration], Phys. Lett. B 545, 43 (2002); V. Sanglar,[EDELWEISS collaboration] arXiv:astro-ph/0306233; D.S. Akerib et al., [CDMS Collaboration], Phys. Rev D 68, 082002 (2003) [arXiv:astro-ph/0405033].Google Scholar
  13. 13.
    G.L. Kane et al., Phys. Rev. D 49, 6173 (1994).CrossRefADSGoogle Scholar
  14. 14.
    J. Ellis, K.A. Olive, Y. Santoso and V.C. Spanos, Phys. Rev. D 70, 055005 (2004).CrossRefADSGoogle Scholar
  15. 15.
    A. Bottino et al., Phys. Lett B 402, 113 (1997). R. Arnowitt. and P. Nath, Phys. Rev. Lett. 74, 4952 (1995); Phys. Rev. D 54, 2394 (1996), hep-ph/9902237 V.A. Bednyakov, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Lett. B 329, 5 (1994).Google Scholar
  16. 16.
    M.E.Gómez and J.D. Vergados, Phys. Lett. B 512, 252 (2001) [hep-ph/0012020] M.E. Gómez, G. Lazarides and C. Pallis, Phys. Rev. D 61, 123512 (2000); Phys. Lett. B 487, 313 (2000).Google Scholar
  17. 17.
    M.E. Gómez and J.D. Vergados, hep-ph/0105115.Google Scholar
  18. 18.
    M.W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).CrossRefADSGoogle Scholar
  19. 19.
    K. Griest, Phys. Rev. Lett 61, 666 (1988).CrossRefADSGoogle Scholar
  20. 20.
    J. Ellis and R.A. Flores, Phys. Lett. B 263, 259 (1991); Phys. Lett. B 300, 175 (1993); Nucl. Phys. B 400, 25 (1993).Google Scholar
  21. 21.
    J. Ellis and L. Roszkowski, Phys. Lett. B 283, 252 (1992).CrossRefADSGoogle Scholar
  22. 22.
    J.D. Vergados, Part. Nucl. Lett. 106, 74 (2001), [hep-ph/0010151].Google Scholar
  23. 23.
    U. Chattopadhyay, A. Corsetti and P. Nath, Phys. Rev. D 68, 035005 (2003).CrossRefADSGoogle Scholar
  24. 24.
    U. Chattopadhyay and D.P. Roy, Phys. Rev. D 68, 033010 (2003), [hep-ph/0304108].Google Scholar
  25. 25.
    B. Murakami and J.D. Wells, Phys. Rev. D 015001, (2001) [hep-ph/0011082].Google Scholar
  26. 26.
    J.D. Vergados, J. Phys. G 30, 1127 (2004).CrossRefADSGoogle Scholar
  27. 27.
    Dark Matter Candidates in Supersymmetric Models K.A. Olive, Summary of talk at Dark 2004, proceedings of 5th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, hep-ph/0412054.Google Scholar
  28. 28.
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Phys. Rev. D 71, 015007 (2005).CrossRefADSGoogle Scholar
  29. 29.
    Update on the Direct Detection of Supersymmetric Dark Matter, J. Ellis, K. A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 71, 095007 (2005) [hep-ph/0502001].Google Scholar
  30. 30.
    J.D. Vergados, J. of Phys. G 22, 253 (1996).CrossRefADSGoogle Scholar
  31. 31.
    A. Arnowitt and B. Dutta, Supersymmetry and Dark Matter, hep-ph/0204187.Google Scholar
  32. 32.
    E. Accomando, A. Arnowitt and B. Dutta, Dark Matter, muon G-2 and other accelerator constraints, hep-ph/0211417.Google Scholar
  33. 33.
    A.K. Drukier, K. Freese and D.N. Spergel, Phys. Rev. D 33, 3495 (1986).CrossRefADSGoogle Scholar
  34. 34.
    K. Frese and J.A Friedman and A. Gould, Phys. Rev. D 37, 3388 (1988).CrossRefADSGoogle Scholar
  35. 35.
    J.D. Vergados, Phys. Rev. D 58, 103001-1 (1998).CrossRefADSGoogle Scholar
  36. 36.
    J.D. Vergados, Phys. Rev. Lett. 83, 3597 (1999).CrossRefADSGoogle Scholar
  37. 37.
    J.D. Vergados, Phys. Rev. D 62, 023519 (2000).CrossRefADSGoogle Scholar
  38. 38.
    J.D. Vergados, Phys. Rev. D 63, 06351 (2001).CrossRefGoogle Scholar
  39. 39.
    J.I. Collar et al., Phys. Lett. B 275, 181 (1982).ADSGoogle Scholar
  40. 40.
    P. Ullio and M. Kamioknowski, JHEP 0103, 049 (2001).CrossRefADSGoogle Scholar
  41. 41.
    M. Drees and N.N. Nojiri, Phys. Rev. D 48, 3843 (1993); Phys. Rev. D 47, 4226 (1993).Google Scholar
  42. 42.
    A. Djouadi and M.K. Drees, Phys. Lett. B 484, 183 (2000); S. Dawson, Nucl. Phys. B 359, 283 (1991); M. Spira it et al., Nucl. Phys. B 453, 17 (1995).Google Scholar
  43. 43.
    T.P. Cheng, Phys. Rev. D 38, 2869 (1988); H-Y. Cheng, Phys. Lett. B 219, 347 (1989).Google Scholar
  44. 44.
    M.T. Ressell et al., Phys. Rev. D 48, 5519 (1993); M.T. Ressell and D.J. Dean, Phys. Rev. C 56, 535 (1997).Google Scholar
  45. 45.
    J.D. Vergados and T.S. Kosmas, Physics of Atomic nuclei, Vol. 61, No 7, 1066 (1998) from Yadernaya Fisika, Vol. 61, No 7, 1166 (1998).Google Scholar
  46. 46.
    P.C. Divari, T.S. Kosmas, J.D. Vergados and L.D. Skouras, Phys. Rev. C 61, 044612–1 (2000).CrossRefADSGoogle Scholar
  47. 47.
    K.N. Buckland, M.J. Lehner and G.E. Masek, in Proc. 3nd Int. Conf. on Dark Matter in Astro- and part. Phys. (Dark2000), Ed. H.V. Klapdor-Kleingrothaus, Springer Verlag (2000).Google Scholar
  48. 48.
    The NAIAD experiment B. Ahmed et al., Astropart. Phys. 691, (2003) 19, [hep-ex/0301039]; B. Morgan, A.M. Green and N.J.C. Spooner, Phys. Rev. D 71 103507, (2005) [astro-ph/0408047].Google Scholar
  49. 49.
    H. Ejiri, K. Fushimi and H. Ohsumi, Phys. Lett. B 317 14 (1993).CrossRefADSGoogle Scholar
  50. 50.
    J.D. Vergados, P. Quentin and D. Strottman, IJMPE 14, 751 (2005).CrossRefADSGoogle Scholar
  51. 51.
    E. Homlund, M. Kortelainen, T.S. Kosmas, J. Suhonen and J. Toivanen, Phys. Lett B 584 31 (2004); Phys. Atom. Nucl. 67, 1198 (2004).Google Scholar
  52. 52.
    T.S. Kosmas and J.D. Vergados, Phys. Rev. D 55, 1752 (1997).CrossRefADSGoogle Scholar
  53. 53.
    A.K. Drukier et al., Phys. Rev. D 33, 3495 (1986), J.I. Collar et al., Phys. Lett B 275, 181 (1992).Google Scholar
  54. 54.
    A. Green, Phys. Rev. D 66, 083003 (2002).CrossRefADSGoogle Scholar
  55. 55.
    P. Sikivie, I. Tkachev and Y. Wang, Phys. Rev. Let. 75, 2911 (1995); Phys. Rev. D 56, 1863 (1997) P. Sikivie, Phys. Let. B 432, 139 (1998) [astro-ph/9810286].Google Scholar
  56. 56.
    D. Owen and J.D. Vergados, Astrophys. J. 589, 17 (2003), [astro-ph/0203923].Google Scholar
  57. 57.
    J.D. Vergados and H. Ejiri, Phys. Lett. B 606, 305 (2005), [hep-ph/0401151].Google Scholar
  58. 58.
    Ch.C. Moustakidis, J.D. Vergados and H. Ejiri, Nucl. Phys. B 727, 406 (2005).MATHCrossRefADSGoogle Scholar
  59. 59.
    H. Ejiri, Ch.C. Moustakidis and J.D. Vergados, Dark matter search by exclusive studies of X-rays following WIMPs nuclear interactions, (to appear in Phys. Lett.), hep-ph/0507123.Google Scholar
  60. 60.
    J. Gasser, H. Leutwyler and M.E. Sainio, Phys. Lett. B 253, 260 (1991); Lect. Notes phys. B 253, 260 (1991).Google Scholar
  61. 61.
    J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).CrossRefADSGoogle Scholar
  62. 62.
    W.B. Kaufmann and G.E. Hite, Phys. Rev. C 60, 055294 (1999).CrossRefADSGoogle Scholar
  63. 63.
    M.G. Olsson, Phys. Lett. B 482, 50 (2000), [arXiv:hep-ph/0001203].Google Scholar
  64. 64.
    M.M. Pavan, I.I. Strakovsky, R.L. Workman and R.A. Arndt, PiN Newslett. 16, 110 (2002) [hep-ph/0111066].Google Scholar
  65. 65.
    M.G. Olsson and W.B. Kaufmann, PiN Newslett. 16, 382 (2002), [hep-ph/0111066].Google Scholar
  66. 66.
    The Strange Spin of the Nucleon, J. Ellis and M. Karliner, hep-ph/9501280.Google Scholar
  67. 67.
    E. Moulin, F. Mayet and D. Santos, Phys. Lett. B 614, 143 (2005).CrossRefADSGoogle Scholar
  68. 68.
    D. Santos et al., The MIMAC-He3 Collaboration, A New 3He Detector for non Baryonic Dark Matter Search, Invited talk in idm2004 (to appear in the proceedings).Google Scholar
  69. 69.
    J.D. Vergados, Direct SUSY Dark Matter Detection- Constraints on the Spin Cross Section, hep-ph/0512305.Google Scholar
  70. 70.
    P. Belli, R. Cerulli, N. Fornego and S. Scopel, Phys. Rev. D 66, 043503 (2002), [hep-ph/0203242].Google Scholar
  71. 71.
    C. Savage, P. Gondolo and K. Freese, Phys. Rev. D 70, 123513 (2004).CrossRefADSGoogle Scholar
  72. 72.
    F. Giuliani and T.A. Girard, Phys. Lett. B 588, 151 (2004).CrossRefADSGoogle Scholar
  73. 73.
    D.S. Akerib et al. (CDMS Collaboration), Phys. Rev. Lett. 93, 211301 (2004).CrossRefADSGoogle Scholar
  74. 74.
    H. Pagels, Phys. Rep. 16, 219 (1975).CrossRefADSMathSciNetGoogle Scholar
  75. 75.
    E. Reya, Rev. Mod Phys. 40, 545 (1974).CrossRefADSMathSciNetGoogle Scholar
  76. 76.
    ULF-G. Meissner et al., hep-ph/0011277.Google Scholar
  77. 77.
    M.M. Pavan, R.A. Arndt, I.I. Strakovsky and R.L. Workman, Phys. PiN Newslett. 16, 110 (2002), [hep-ph/0111066].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • John Vergados
    • 1
  1. 1.Physics DepartmentUniversity of IoanninaIoanninaGreece

Personalised recommendations