Advertisement

Bioimpedance Spectroscopy with textile Electrodes for a continuous Monitoring Application

  • Guillermo Medrano
  • L. Beckmann
  • N. Zimmermann
  • T. Grundmann
  • T. Gries
  • S. Leonhardt
Part of the IFMBE Proceedings book series (IFMBE, volume 13)

Abstract

Bioimpedance spectroscopy (BIS) enables the determination of the human body composition (e.g. fat content, water content). From this data, it is possible to draw conclusions about the person’s health condition. The measurement is carried out with at least four electrodes placed on the body. Nowadays, positioning and wiring of the electrodes can only been conducted by qualified personnel. Even the latest systems on the market are uncomfortable to wear and their use for mobile purposes is highly limited. The commercial BIS electrodes, not suitable for a long term use, may cause allergic reactions. Textile integration plays a role not just concerning the manufacturing of long term electrodes, but also concerning the integration of cables and other electrical components into a wearable and comfortable application. In this article, a portable BIS system combined with textile electrodes is presented as a possible future application. The first validation results of the portable BIS-device and textile electrodes are analysed and the suitability of application is discussed in order to develop a wearable bioimpedance spectroscopy system.

Keywords

bioimpedance spectroscopy textile electrodes long-term-monitoring wearable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lymberis A, Olsson S (2003) Intelligent Biomedical Clothing for Personal Health and Disease Management: State of the Art. Telemedicine Journal and e-Health. Vol. 9, Nr. 4.Google Scholar
  2. 2.
    Jossinet J (2005) Bioimpedance and p-Health. Personalised Health Management Systems (2005) IOS Press. Nugent C. 35-41.Google Scholar
  3. 3.
    Moissl U, Wabel P, Chamney P, et al. (2006) Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas 27: 921–933.CrossRefGoogle Scholar
  4. 4.
    Winters, R. The body fluids in pediatrics (1977) Little, Brown and company. Boston. USA.Google Scholar
  5. 5.
    Medrano G, Beckmann L, Leonhardt S (2006) Einfluss der Körperlage auf Bioimpedanz-Spektroskopie Messungen. Dreiländertagung BMT 2006, ETH Zürich, 6–9 September 2006.Google Scholar
  6. 6.
    Fenech M, Jaffrin MY (2004) Extracellular and intracellular volume variations during postural change measured by segmental and wristankle bioimpedance spectroscopy. IEEE Transactions on Biomedical Engineering. 51(1): 166–175.CrossRefGoogle Scholar
  7. 7.
    Vuorela T (2005) Textile electrode usage in a bioimpedance measurement, Intelligent Ambience and Well-Being, Finland, September 2005.Google Scholar
  8. 8.
    Yang Y, Wang J, Yu G, et al. (2006) Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Phyiol. Meas. 27: 1293–1310.CrossRefGoogle Scholar
  9. 9.
    Gudivaka R, Schoeller R, Kushner F, et al. (1999) Single and multi-frequency models for bioelectrical impedance analysis of body water compartments. J Appl. Physiol. 87(3):1087–196.Google Scholar
  10. 10.
    Beckmann L, Medrano G, Leonhardt S (2006) Tragbares Bioimpedanz-Spektroskopie Gerät. Dreiländertagung BMT 2006, ETH Zürich, 6–9 September 2006.Google Scholar
  11. 11.
    Medrano G, Zimmermann N, Gries T, Leonhardt S (2006) Bioimpedanz-Spektroskopie (BIS) mit textilen Elektroden. Dreiländertagung BMT 2006, ETH Zürich, 6–9 September 2006.Google Scholar
  12. 12.
    Gabriel C, Gabriel S, Lau R W (1996) The dielectrical properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. In: Physics in Medicine and Biology 41.Google Scholar
  13. 13.
    Grimnes S, Martinsen O (2000) Bioimpedance and bioelectricity basics. 1st ed. Academic Press, London.Google Scholar
  14. 14.
    Hanai, T (1968) Electrical properties of emulsions. In: Sherman DH, ed. Emulsions Science. London: Academic, 354–477.Google Scholar
  15. 15.
    Fenech M, Maasrani M, Jaffrin M (2001) Fluid volumes determination by impedance spectroscopy and hematocrit monitoring: application to pediatric hemodialysis. artificial organs. 25(2): 89–98, Blackwell Science Inc.CrossRefGoogle Scholar
  16. 16.
    Wintermantel, E.; Ha, S.W (1998) Biokompatible Werkstoffe und Bauweisen, Implantate für Medizin und Umwelt, 2. Auflage, Springer-Verlag, Heidelberg.Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • Guillermo Medrano
    • 1
  • L. Beckmann
    • 1
  • N. Zimmermann
    • 2
  • T. Grundmann
    • 2
  • T. Gries
    • 2
  • S. Leonhardt
    • 1
  1. 1.Philips Chair for Medical Information Technology (MedIT)AachenGermany
  2. 2.Institute für Textiltechnik der RWTH Aachen (ITA)AachenGermany

Personalised recommendations