Advertisement

Multi-Axis Inertial Measurement Units measuring human Posture and Motion

  • Martin Trächtler
  • D. Hodgins
  • L. Kenney
  • M. Dienger
  • T. Link
  • Y. Manoli
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 13)

Abstract

This paper presents the development of systems monitoring human body motions and postures for clinical purposes. The hardware for these applications exploits a newly released commercial Micro-Electro-Mechanical (MEM) 3-axis accelerometer and a MEM 3-axis rate gyroscope being developed by HSG-IMIT. First the paper gives an overview of wearable 3-axis accelerometer systems and the corresponding data storage and transmission developed by ETB. The main part of the paper describes the design of the 3-axis rate gyroscope to be implemented in an Inertial Measurement Unit (IMU) for the body motion monitoring. Such health applications require IMUs of very low size to be able to fix the sensor cluster to the human being. This prevents the use of state-of-the-art IMUs implemented by three perpendicular orientated rate gyroscopes for this purpose. Thus a novel 3-axis rate gyroscope realised in one plane, on a single die, is being developed. With this device a reduction of the package size of multiaxial MEM sensors is achievable at least by a factor of ten. A further advantage of this approach is the reduced cost due to the omission of a spatial configuration and due to the small dimensions. Finally the synthesis of the 3-axis accelerometer and the 3-axis rate gyroscope to an IMU for monitoring 3D body segment orientation is addressed.

Keywords

human body monitoring IMU 3-axis rate gyroscope inertial sensors MEMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yole Development, WISM’05: World Inertial Sensors Market, 2005Google Scholar
  2. 2.
    I. P. Pappas, M. R. Popovic, T. Keller, V. Dietz, and M. Morari, “A reliable gait phase detection system,” IEEE Trans Neural Syst Rehabil Eng, vol. 9, pp. 113–125, 2001.CrossRefGoogle Scholar
  3. 3.
    A. T. Willemsen, F. Bloemhof, and H. B. Boom, “Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation,” IEEE Trans Biomed Eng, vol. 37, pp. 1201–8, 1990.CrossRefGoogle Scholar
  4. 4.
    P. Tresadern, S. Thies, L. Kenney, D. Howard, J. Goulermas, “Artificial neural network prediction using accelerometers to control upper limb FES during reaching and grasping following stroke,” presented at 28th IEEE Int. Conf. Engineering in Medicine and Biology Society (EMBS), New York, USA, 2006.Google Scholar
  5. 5.
    D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, “Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,” IEEE Trans Inf Technol Biomed, vol. 10, pp. 156–67, 2006.CrossRefGoogle Scholar
  6. 6.
    D. Giansanti, V. Macellari, G. Maccioni, and A. Cappozzo, “Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data?,” IEEE Trans Biomed Eng, vol. 50, pp. 476–83, 2003.CrossRefGoogle Scholar
  7. 7.
    A. M. Sabatini, “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE Trans Biomed Eng, vol. 53, pp. 1346–56, 2006.CrossRefGoogle Scholar
  8. 8.
    Healthy-Aims, Implantable microsensors and microsystems for ambulatory measurement and control in medical products, IP IST-2002-001837Google Scholar
  9. 9.
    Thies SB, Tresadern PA, Kenney L, Howard D, Goulermas JY et al A “virtual sensor” tool to simulate accelerometers for upper limb FES triggering J Biomech, vol 39(S1), pp. S80, 2006CrossRefGoogle Scholar
  10. 10.
    M. Trächtler, et al., Adapted SOI Technology for Multi-Axis Inertial Sensors, Micro System Technologies, 5.–6. Oktober 2005, München, Proceedings, pp.141–147Google Scholar
  11. 11.
    M. Trächtler, et al., A new Approach for Multi-Axis Inertial Sensor Units on a Single Silicon Die based on SOI-Technology, Proc. Symposium Gyro Technology 2006, Stuttgart, Germany, Sep. 2006Google Scholar
  12. 12.
    J. Kim, et al., A Planar, X-Axis, Single-Crystalline Silicon Gyroscope Fabricated Using the Extended SBM Process, Proc. IEEE MEMS, pp 556–9, Maastricht, The Netherlands, Jan. 25–29, 2004Google Scholar
  13. 13.
    Hahn-Schickard-Gesellschaft, Drehratensensor und Drehratensensorsystem, Offenlegungsschrift DE 100 40 418 A1Google Scholar

Copyright information

© International Federation for Medical and Biological Engineering 2007

Authors and Affiliations

  • Martin Trächtler
    • 1
  • D. Hodgins
    • 2
  • L. Kenney
    • 3
  • M. Dienger
    • 1
  • T. Link
    • 1
  • Y. Manoli
    • 1
    • 4
  1. 1.HSG-IMITVillingen-SchwenningenGermany
  2. 2.Codicote Innovation CentreETBCodicote, HertsUK
  3. 3.CRHPRUniversity of SalfordSalfordUK
  4. 4.IMTEKUniversity of FreiburgFreiburgGermany

Personalised recommendations