Cluster Quality Indexes for Symbolic Classification — An Examination

  • Andrzej Dudek
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The paper presents difficulties of measuring clustering quality for symbolic data (such as lack of a “traditional” data matrix). Some hints concerning the usage of known indexes for such kind of data are given and indexes designed exclusively for symbolic data are described. Finally, after the presentation of simulation results, some proposals for choosing the most adequate indexes for popular classification algorithms are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAKER, F.B. and HUBERT, L.J. (1975): Measuring the Power of Hierarchical Cluster Analysis. Journal of the American Statistical Association, 70,349, 31–38.CrossRefMATHGoogle Scholar
  2. BALL, F.B. and HALL, D.J. (1965): ISODATA, A Novel Method of Data Analysis and Pattern Classification. Tech. Rep. NTIS No.AD 699616, Stanford Research Institute, Menlo Park.Google Scholar
  3. BOCK, H.-H. and DIDAY, E. (2000): Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data. Springer, Berlin.Google Scholar
  4. CALIŃSKI, R.B. and HARABASZ, J. (1974): A Dendrite Method for Cluster Analysis. Communications in Statistics, 3, 1–27.CrossRefMATHGoogle Scholar
  5. CHAVENT, M., DE CARVALHO, F.A.T., VERDE, R. and LECHEVALLIER, Y. (2003): Trois Nouvelle Méthodes de Classification Automatique de Données Symboliques de Type Intervalle. Revue de Statistique Appliquée, LI 4, 5–29.Google Scholar
  6. DIDAY, E. (2002): An Introduction to Symbolic Data Analysis and the SODAS Software. J.S.D.A., International EJournal.Google Scholar
  7. FRIEDMAN, H.P. and RUBIN, J. (1967): On Some Invariant Criteria for Grouping Data. Journal of the American Statistical Association, 62, 1159–1178.CrossRefMathSciNetGoogle Scholar
  8. GORDON, A.D. (1999): Classification, Chapman & Hall/CRC, London.MATHGoogle Scholar
  9. HARDY, A. (2005): Validation of Unsupervised Symbolic Classification. Proceedings of ASMDA 2005 Conference. Available at URL: http://asmda2005.enst-bretagne.fr/IMG/pdf/proceedings/379.pdf.Google Scholar
  10. HARTIGAN, J.A. (1975): Clustering Algorithms. New York, Wiley.MATHGoogle Scholar
  11. HUBERT, L.J. (1974): Approximate Evaluation Technique for the Single-link and Complete-link Hierarchical Clustering Procedures. Journal of the American Statistical Association, 69,347, 698–704.CrossRefMathSciNetMATHGoogle Scholar
  12. HUBERT, L.J. and LEVINE, J.R. (1976): Evaluating Object Set Partitions: Free Sort Analysis and Some Generalizations. Journal of Verbal Learning and Verbal Behaviour, 15, 549–570.CrossRefGoogle Scholar
  13. KAUFMAN, L. and ROUSSEEUW, P.J. (1990): Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.CrossRefGoogle Scholar
  14. KRZANOWSKI, W.J. and LAI, Y.T. (1988): A Criterion for Determining the Number of Groups in a Data Set Using Sum of Squares Clustering. Biometrics, 44, 23–34.CrossRefMathSciNetMATHGoogle Scholar
  15. MARRIOT, F.H. (1971). Practical Problems in a Method of Cluster Analysis. Biometrics, 27, 501–514.CrossRefGoogle Scholar
  16. MCQUITTY, L.L. (1966): Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data. Educational and Psychological Measurement, 26, 825–831.CrossRefGoogle Scholar
  17. MILLIGAN, G.W. and COOPER, M.C. (1985): An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika, 2, 159–179.CrossRefGoogle Scholar
  18. RATKOVSKI, D.A. and LANCE, G.N. (1978) A Criterion for Determining a Number of Groups in a Classification. Australian Computer Journal, 10, 115–117.Google Scholar
  19. ROUSSEEUW, P.J. (1987): Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53–65.CrossRefMATHGoogle Scholar
  20. SCOTT, A.J. and SYMONS, M.J. (1971) Clustering Methods Based on Likelihood Ratio Criteria. Biometrics, 27, 387–397.CrossRefGoogle Scholar
  21. VERDE, R. (2004): Clustering Methods in Symbolic Data Analysis. In: D. Banks et al. (Eds.): Classification, Clustering and Data Mining Applications, Springer, Berlin, 299–318.CrossRefGoogle Scholar
  22. WEINGESSEL, A., DIMITRIADOU, A. and DOLNICAR, S. (1999): An Examination Of Indexes For Determining The Number Of Clusters In Binary Data Sets. Available at URL: http://www.wu-wien.ac.at/am/wp99.htm#29.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrzej Dudek
    • 1
  1. 1.Department of Econometrics and Computer ScienceWrocław University of EconomicsJelenia GóraPoland

Personalised recommendations