Skip to main content

Laboratory Methods for Detection of Human Papillomavirus Infection

  • Chapter
  • First Online:
Human Papillomavirus
  • 956 Accesses

Abstract

The diagnosis of human papillomavirus (HPV) infection can be inferred from morphological, serological, and clinical findings. In productive infections, such as warts, virus particles of about 50 nm diameter can be detected by electron microscopy and by immune detection of the virus capsid proteins (L1, L2). Immuno­logical detection of HPV in human cells or tissues has been hindered by three main factors: (a) the late, capsid proteins are only expressed in productive infections; (b) the early proteins are often expressed in low amounts in infected tissues; and (c) the lack of high-quality, sensitive, and specific antibodies against the viral proteins. Antibodies generated against bovine papillomavirus (BPV) late proteins have been widely used because of the observed cross-reaction with HPV late proteins; however, they have low sensitivity and fail to discriminate between HPV types, which is essential for disease risk determination. Detection of HPV early proteins is even more complicated due to the low expression levels generally observed in cells or tissues derived from HPV-positive lesions. Antibodies against E6 or E7 are available but their use is mostly restricted to in vitro assays including the direct visualization in cells or tissues (immunohistochemistry) or in protein extracts (Western blots and immune precipitation assays), not always with consistent results. HPV cannot be propagated in tissue culture and hence in most cases its accurate identification relies on molecular biology techniques. With a double-stranded DNA genome of about 8,000 base pairs (bp) in length and a well-known physical structure and gene organization, tests of choice for detecting HPV from clinical specimens are based on nucleic acid probe technology. Direct detection of HPV genomes and its transcripts can be achieved with hybridization procedures that include Southern and Northern blots, dot blots, in situ hybridization (ISH), Hybrid Capture (HC; formerly DIGENE Co., now QIAGEN, MA, USA), and DNA sequencing (reviewed in Iftner and Villa, 2003). A variety of signal-detection procedures are available that can further increase the sensitivity of these assays. The only procedure potentially capable of recognizing all HPV types and variants present in the biological specimen is DNA sequencing of the viral genome, either after cloning into plasmids or by direct sequencing of a polymerase chain reaction (PCR) fragment. This method, however, is presently labor-intensive and requires expensive equipment. Moreover, direct sequencing of specimens containing multiple HPVs awaits further developments.

Also contributed by Luisa Lina Villa, Ludwig Institute for Cancer Research, São Paulo, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar LV, Lazcano-Ponce E, Vaccarella S (2006) Human papillomavirus in men: Comparison of different genital sites. Sex Transm Infect 82(1): 31–33

    Article  PubMed  CAS  Google Scholar 

  • Baldwin SB, Wallace DR, Papenfuss MR, et al (2003) Human papillomavirus infection in men attending a sexually transmitted disease clinic. J Infect Dis 187(7): 1064–1070

    Article  PubMed  Google Scholar 

  • Benevolo M, Mottolese M, Marandino F, et al (2008) HPV prevalence among healthy Italian male sexual partners of women with cervical HPV infection. J Med Virol 80(7): 1275–1281

    Article  PubMed  Google Scholar 

  • Bernard H, Chan S, Manos MM, et al (1994) Identification and assessment of known and novel human papillomavirus by polymerase chain reaction amplification, restriction fragment polymorphisms, nucleotide sequence, and phylogeny algorithms. J Infect Dis 170: 1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Bosch FX, BurchellAN, Schiffman M, et al (2008) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26 (Suppl 10): K1–K16

    Article  PubMed  Google Scholar 

  • Carter JJ, Madeleine MM, Shera K, et al (2001) Human papillomavirus 16 and 18 L1 serology compared across anogenital cancer sites. Cancer Res 61(5): 1934–1940

    PubMed  CAS  Google Scholar 

  • Cuschieri KS, Beattie G, Hassan S, et al (2005) Assessment of human papillomavirus mRNA detection over time in cervical specimens collected in liquid based cytology medium. J Virol Methods 124: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Cuschieri KS, Whitley MJ, Cubie H (2004) Human papillomavirus type specific DNA and RNA persistence – implications for cervical disease progression and monitoring. J Med Virol 73: 65–70

    Article  PubMed  CAS  Google Scholar 

  • de Roda Husman AM, Snijders PJ, Stel HV, et al (1995) Processing of long-stored archival cervical smears for human papillomavirus detection by the polymerase chain reaction. Br J Cancer 72: 412–417

    Article  PubMed  CAS  Google Scholar 

  • Dias D, Van Doren J, Schlottmann S, et al (2005) Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomaviruses 6, 11, 16, and 18. Clin Diagn Lab Immunol 12(8): 959–969

    PubMed  CAS  Google Scholar 

  • Dunne EF, Nielson CM, Stone KM, et al (2006) Prevalence of HPV infection among men: A systematic review of the literature. J Infect Dis 194(8): 1044–1057

    Article  PubMed  Google Scholar 

  • Ferguson M, Heath A, Johnes S, et al, Collaborative Study Participants (2006) Results of the first WHO international collaborative study on the standardization of the detection of antibodies to human papillomaviruses. Int J Cancer 118(6): 1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Fife KH, Coplan PM, Jansen KU, et al (2003) Poor sensitivity of polymerase chain reaction assays of genital skin swabs and urine to detect HPV 6 and 11 DNA in men. Sex Transm Dis 30(3): 246–248

    Article  PubMed  Google Scholar 

  • Flores R, Abalos AT, Nielson CM, et al (2008) Reliability of sample collection and laboratory testing for HPV detection in men. J Virol Methods 149(1): 136–143

    Article  PubMed  CAS  Google Scholar 

  • Giuliano AR (2007) Human papillomavirus vaccination in males. Gynecol Oncol 107(2 Suppl 1): S24–S26

    Article  PubMed  CAS  Google Scholar 

  • Giuliano AR, Lazcano-Ponce E, Villa LL, et al (2008a) The human papillomavirus infection in men study: Human papillomavirus prevalence and type distribution among men residing in Brazil, Mexico, and the United States. Cancer Epidemiol Biomarkers Prev 17(8): 2036–2043

    Article  PubMed  CAS  Google Scholar 

  • Giuliano AR, Lu B, Nielson CM, et al (2008b) Age-specific prevalence, incidence, and duration of human papillomavirus infections in a cohort of 290 US men. J Infect Dis 198(6): 827–835

    Article  PubMed  Google Scholar 

  • Giuliano AR, Nielson CM, Flores R, et al (2007) The optimal anatomic sites for sampling heterosexual men for human papillomavirus (HPV) detection: The HPV detection in men study. J Infect Dis 196(8): 1146–1152

    Article  PubMed  Google Scholar 

  • Giuliano AR, Tortolero-Luna G, Ferrer E, et al (2008c) Epidemiology of human papillomavirus infection in men, cancers other than cervical and benign conditions. Vaccine 26(Suppl 10): K17–K28

    Article  PubMed  Google Scholar 

  • Gravitt PE, Peyton C, Wheeler C, et al (2003) Reproducibility of HPV 16 and HPV 18 viral load quantitation using TaqMan real-time PCR assays. J Virol Methods 112(1–2): 23–33

    Article  PubMed  CAS  Google Scholar 

  • Gravitt PE, Peyton CL, Alessi TQ, et al (2000) Improved amplification of genital human papillomaviruses. J Clin Microbiol 38: 357–361

    PubMed  CAS  Google Scholar 

  • Hernandez BY, McDuffie K, Goodman MT, et al (2006) Comparison of physician- and self-collected genital specimens for detection of human papillomavirus in men. J Clin Microbiol 44(2): 513–517

    Article  PubMed  Google Scholar 

  • Iftner T, Villa LL (2003) Chapter 12: Human papillomavirus technologies. J Natl Cancer Inst Monogr 31: 80–88

    Article  PubMed  Google Scholar 

  • Jacobs MV, de Roda Husman AM, van den Brule AJ, et al (1995) Group-specific differentiation between high- and low-risk human papillomavirus genotypes by general primer-mediated PCR and two cocktails of oligonucleotide probes. J Clin Microbiol 33: 901–905

    PubMed  CAS  Google Scholar 

  • Klaes R, Woerner SM, Ridder R, et al (1999) Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes Cancer Res 59(24): 6312–6316

    Google Scholar 

  • Kleter B, van Doorn LJ, Schrauwen L, et al (1999) Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol 37: 2508–2517

    PubMed  CAS  Google Scholar 

  • Konya J, Dillner J (2001) Immunity to oncogenic human papillo­maviruses. Adv Cancer Res 82: 205–238

    Article  PubMed  CAS  Google Scholar 

  • Lamarcq L, Deeds J, Ginzinger D, et al (2002) Measurements of human papillomavirus transcripts by real time quantitative reverse transcription-polymerase chain reaction in samples collected for cervical cancer screening. J Mol Diagn 4(2): 97–102

    Article  PubMed  CAS  Google Scholar 

  • Lorincz A, Anthony J, (2001) Advances in HPV detection by hybrid capture. Papillomavirus Rep 145: 154

    Google Scholar 

  • Moberg M, Gustavsson I, Gyllensten U (2004) Type-specific associations of human papillomavirus load with of ­developing cervical carcinoma in situ. Intl J Cancer 112(5): 854–859

    Article  CAS  Google Scholar 

  • Molden T, Kraus I, Skomedal H, et al (2005) Comparison of human papillomavirus messenger RNA and DNA detection: A cross-sectional study of 4,136 women >30 years of age with a 2-year follow-up of high-grade squamous intraepi­thelial lesion. Cancer Epidemiol Biomarkers Prev 14(2): 367–373

    Article  PubMed  CAS  Google Scholar 

  • Nielson CM, Flores R, Harris RB, et al (2007) Human papillomavirus prevalence and type distribution in male anogenital sites and semen. Cancer Epidemiol Biomarkers Prev 16(6):1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki S, Wakamatsu A, Longatto Filho A, et al (2004) Hybrid capture II and polymerase chain reaction for identidying HPV infections in samples collected in a new collection medium. A comparison. Acta Cytol 48(4): 514–520

    Article  Google Scholar 

  • Nuovo GJ, Moritz J, Walsh LL, et al (1992) Predictive value of human papillomavirus DNA detection by filter hybridization and polymerase chain reaction in women with negative results of colposcopic examination. Anatom Pathol 98(5): 489–492

    CAS  Google Scholar 

  • Ogilvie G, Taylor D, Krajden M, et al (2008) Self collection of genital human papillomavirus in heterosexual men. Sex Transm Infect Dec 9 [Epub ahead of print]

    Google Scholar 

  • Partridge JM, Koutsky LA (2006) Genital human papillomavirus infection in men. Lancet Infect Dis 6(1): 21–31

    Article  PubMed  Google Scholar 

  • Pastrana DV, Buck CB, Pang YY, et al (2004) Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321(2): 205–216

    Article  PubMed  CAS  Google Scholar 

  • Qiao YL, Sellors JW, Eder PS, Bao YP, Lim JM, Zhao FH, Weigl B, Zhang WH, Peck RB, Li L, Chen F, Pan QJ, Lorincz AT (2008) A new HPV-DNA test for cervical cancer screening in developing regions: A cross sectional study of clinical accuracy in rural China. Lancet Oncology 9(10): 926–936

    Article  Google Scholar 

  • Schlecht N, Trevisan A, Duarte-Franco E, et al (2003) Viral load as a predictor of the risk of cervical intraepithelial neoplasia. Int J Cancer 103: 519–524

    Article  PubMed  CAS  Google Scholar 

  • Snijders PJ, van den Brule AJ, Meijer CJ (2003) The clinical relevance of human papillomavirus testing: relationship between analytical and clinical sensitivity. J Pathol 1(1): 1–6

    Article  Google Scholar 

  • Sotlar K, Selinka H-C, Menton M, et al (1998) Detection of human papillomavirus type 16 E6/E7 oncogene transcripts in dysplastic and nondysplastic cervical scrapes by nested RT-PCR. Gynecol Oncol 69: 114–121

    Article  PubMed  CAS  Google Scholar 

  • Stoler MH, Wolinsky SM, Whitbeck A, et al (1997) Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes. Virology 172: 331–340

    Article  Google Scholar 

  • Svare EI, Kjaer SK, Nonnenmacher B, et al (1997) Seroreactivity to human papillomavirus type 16 virus-like particles is lower in high-risk men than in high-risk women. J Infect Dis 176(4): 876–883

    Article  PubMed  CAS  Google Scholar 

  • Svare EI, Kjaer SK, Worm AM, et al (2002) Risk factors for genital HPV DNA in men resemble those found in women: a study of male attendees at a Danish STD clinic. Sex Transm Infect 78(3): 215–218

    Article  PubMed  CAS  Google Scholar 

  • Van den Brule AJ, Pol R, Fransen-Daalmeijer N, Schouls LM, et al (2002) GP5+/6 PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol 40(3): 779–787

    Article  PubMed  CAS  Google Scholar 

  • Weaver BA, Feng Q, Holmes KK, et al (2004) Evaluation of genital sites and sampling techniques for detection of human papillomavirus DNA in men. J Infect Dis 189(4): 677–685

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Lina Villa .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Villa, L.L. (2009). Laboratory Methods for Detection of Human Papillomavirus Infection. In: Human Papillomavirus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70974-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70974-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70973-2

  • Online ISBN: 978-3-540-70974-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics