Process and Pitfalls in Writing Information Visualization Research Papers

  • Tamara Munzner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4950)


The goal of this chapter is to help authors recognize and avoid a set of pitfalls that recur in many rejected information visualization papers, using a chronological model of the research process. Selecting a target paper type in the initial stage can avert an inappropriate choice of validation methods. Pitfalls involving the design of a visual encoding may occur during the middle stages of a project. In a later stage when the bulk of the research is finished and the paper writeup begins, the possible pitfalls are strategic choices for the content and structure of the paper as a whole, tactical problems localized to specific sections, and unconvincing ways to present the results. Final-stage pitfalls of writing style can be checked after a full paper draft exists, and the last set of problems pertain to submission.


IEEE Symposium Target User Paper Type Information Visualization Research Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 111–117 (2005)Google Scholar
  2. 2.
    Becker, R.A., Cleveland, W.S., Shyu, M.J.: The visual design and control of trellis display. Journal of Computational and Statistical Graphics 5, 123–155 (1996)CrossRefGoogle Scholar
  3. 3.
    Card, S., Mackinlay, J.: The structure of the information visualization design space. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 92–99 (1997)Google Scholar
  4. 4.
    Dupré, L.: Bugs in Writing. Addison-Wesley, Reading (1995)Google Scholar
  5. 5.
    Fekete, J.-D., Plaisant, C.: Interactive information visualization of a million items. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 117–126 (2002)Google Scholar
  6. 6.
    Fua, Y.-H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for visualizing large multivariate data sets. In: Proc. IEEE Visualization Conf. (Vis), pp. 43-50 (1999)Google Scholar
  7. 7.
    Furnas, G., Bederson, B.: Space-scale diagrams: Understanding multiscale interfaces. In: Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 234-241 (1995)Google Scholar
  8. 8.
    Furnas, G.W.: A fisheye follow-up: Further reflection on focus + context. In: Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 999–1008 (2006)Google Scholar
  9. 9.
    Grossman, T., Wigdor, D., Balakrishnan, R.: Exploring and reducing the effects of orientation on text readability in volumetric displays. In: Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 483–492 (2007)Google Scholar
  10. 10.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Havre, S., Hetzler, B., Nowell, L.: Themeriver(tm): In search of trends, patterns, and relationships. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 115–123 (2000)Google Scholar
  12. 12.
    Healey, C.G.: Perception in visualization, cited 14 Nov. 2007,
  13. 13.
    Heer, J., boyd, d.: Vizster: Visualizing online social networks. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 32–39 (2005)Google Scholar
  14. 14.
    Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive information visualization. In: Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 421–430 (2005)Google Scholar
  15. 15.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Visualization and Computer Graphics (TVCG) (Proc. InfoVis 06) 12(5), 741–748 (2006)CrossRefGoogle Scholar
  16. 16.
    Hornbæk, K., Hertzum, M.: Untangling the usability of fisheye menus. ACM Trans. on Computer-Human Interaction (ToCHI) 14(2), article 6 (2007)Google Scholar
  17. 17.
    Isaacs, E., Tang, J.: Why don’t more non-North-American papers get accepted to CHI? SIGCHI Bulletin 28(1) (1996),
  18. 18.
    Johnson, C., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.S.: NIH/NSF Visualization Research Challenges Report. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  19. 19.
    Johnson, R.E., et al.: How to get a paper accepted at OOPSLA. In: Proc. Conf. Object Oriented Programming Systems Languages and Applications (OOPSLA), pp. 429–436 (1996),
  20. 20.
    Kajiya, J.: How to get your SIGGRAPH paper rejected,
  21. 21.
    Kincaid, R., Ben-Dor, A., Yakhini, Z.: Exploratory visualization of array-based comparative genomic hybridization. Information Visualization 4(3), 176–190 (2005)CrossRefGoogle Scholar
  22. 22.
    Levin, R., Redell, D.D.: An evaluation of the ninth SOSP submissions; or, how (and how not) to write a good systems paper. ACM SIGOPS Operating Systems Review 17(3), 35–40 (1983), Google Scholar
  23. 23.
    MacEachren, A., Dai, X., Hardisty, F., Guo, D., Lengerich, G.: Exploring high-D spaces with multiform matrices and small multiples. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 31–38 (2003)Google Scholar
  24. 24.
    Mackinlay, J.D.: Automating the Design of Graphical Presentations of Relational Information. ACM Trans. on Graphics (TOG) 5(2), 111–141 (1986)Google Scholar
  25. 25.
    Munzner, T.: Drawing large graphs with H3Viewer and Site Manager. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 384–393. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Munzner, T., Burchard, P.: Visualizing the structure of the world wide web in 3D hyperbolic space. In: Proc. Virtual Reality Modelling Language Symposium (VRML), pp. 33–38. ACM SIGGRAPH (1995)Google Scholar
  27. 27.
    Nielsen, J.: Guerrilla HCI: Using discount usability engineering to penetrate the intimidation barrier. In: Bias, R.G., Mayhew, D.J. (eds.) Cost-justifying usability, pp. 245–272. Academic Press, London (1994)Google Scholar
  28. 28.
    Partridge, C.: How to increase the chances your paper is accepted at ACM SIGCOMM. ACM SIGCOMM Computer Communication Review 28(3) (1998),
  29. 29.
    Plaisant, C.: The challenge of information visualization evaluation. In: Proc. Advanced Visual Interfaces (AVI), pp. 109–116 (2004)Google Scholar
  30. 30.
    Plumlee, M., Ware, C.: Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Proc. ACM Trans. on Computer-Human Interaction (ToCHI) 13(2), 179–209 (2006)CrossRefGoogle Scholar
  31. 31.
    Pousman, Z., Stasko, J.T., Mateas, M.: Casual information visualization: Depictions of data in everyday life. IEEE Trans. Visualization and Computer Graphics (TVCG) (Proc. InfoVis 07) 13(6), 1145–1152 (2007)CrossRefGoogle Scholar
  32. 32.
    Rogowitz, B.E., Treinish, L.A.: How not to lie with visualization. Computers In Physics 10(3), 268–273 (1996), Google Scholar
  33. 33.
    Shaw, M.: Mini-tutorial: Writing good software engineering research papers. In: Proc. Intl. Conf. on Software Engineering (ICSE), pp. 726–736 (2003),
  34. 34.
    Shewchuk, J.: Three sins of authors in computer science and math (1997),
  35. 35.
    Shneiderman, B., Plaisant, C.: Strategies for evaluating information visualization tools: Multi-dimensional in-depth long-term case studies. In: Proc. AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization (BELIV), pp. 38–43 (2006)Google Scholar
  36. 36.
    Smallman, H.S., John, M.S., Oonk, H.M., Cowen, M.B.: Information availability in 2D and 3D displays. IEEE Computer Graphics and Applications (CG&A) 21(5), 51–57 (2001)CrossRefGoogle Scholar
  37. 37.
    Tang, D., Stolte, C., Bosch, R.: Design choices when architecting visualizations. Information Visualization 3(2), 65–79 (2004)CrossRefGoogle Scholar
  38. 38.
    Tory, M., Kirkpatrick, A.E., Atkins, M.S., Möller, T.: Visualization task performance with 2D, 3D, and combination displays. IEEE Trans. Visualization and Computer Graphics (TVCG) 12(1), 2–13 (2006)CrossRefGoogle Scholar
  39. 39.
    Trafton, J.G., Kirschenbaum, S.S., Tsui, T.L., Miyamoto, R.T., Ballas, J.A., Raymond, P.D.: Turning pictures into numbers: Extracting and generating information from complex visualizations. Intl. Journ. Human Computer Studies 53(5), 827–850 (2000)zbMATHCrossRefGoogle Scholar
  40. 40.
    van Wijk, J.J., van Selow, E.R.: Cluster and calendar based visualization of time series data. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 4–9 (1999)Google Scholar
  41. 41.
    Ware, C.: Information Visualization: Perception for Design, 2nd edn. Morgan Kaufmann/Academic Press, London (2004)Google Scholar
  42. 42.
    Weaver, C., Fyfe, D., Robinson, A., Holdsworth, D.W., Peuquet, D.J., MacEachren, A.M.: Visual analysis of historic hotel visitation patterns. Information Visualization 6(1), 89–103 (2007)Google Scholar
  43. 43.
    Wilkinson, L., Anand, A., Grossman, R.: Graph-theoretic scagnostics. In: Proc. IEEE Symposium on Information Visualization (InfoVis), pp. 157-164 (2005)Google Scholar
  44. 44.
    Yost, B., North, C.: The perceptual scalability of visualization. IEEE Trans. Visualization and Computer Graphics (TVCG) (Proc. InfoVis 06) 12(5), 837–844 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tamara Munzner
    • 1
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations