Parallel Incomplete Factorization of 3D NC FEM Elliptic Systems

  • Yavor Vutov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4310)


A new parallel preconditioner for solution of large scale second order 3D FEM elliptic systems is presented. The problem is discretized by rotated trilinear non-conforming finite elements. The algorithm is based on application of modified incomplete Cholesky factorisation (MIC(0)) to a locally constructed modification B of the original stiffness matrix A. The matrix B preserves the robustness of the point-wise factorisation and has a special block structure allowing parallelization. The performed numerical tests are in agreement with the derived estimates for the parallel times.


FEM PCG MIC(0) Parallel Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1995)Google Scholar
  2. 2.
    Arbenz, P., Margenov, S.: Parallel MIC(0) preconditioning of 3D nonconforming FEM systems. Iterative Methods, Preconditioning and Numerical PDEs, Processings, 12-15 (2004)Google Scholar
  3. 3.
    Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO, Model. Math. Anal. Numer. 19, 7–32 (1985)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Blaheta, R.: Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems. Numer. Lin. Alg. Appl. 1, 107–126 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bencheva, G., Margenov, S.: Parallel incomplete factorization preconditioning of rotated bilinear FEM systems. J. Comp. Appl. Mech. 4(2), 105–117 (2003)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bencheva, G., Margenov, S., Star, J.: MPI Implementation of a PCG Solver for Nonconforming FEM Problems: Overlapping of Communications and Computations. Technical Report, -023, Uppsala University (2006)Google Scholar
  7. 7.
    Gustafsson, I.: Stability and rate of convergence of modified incomplete Cholesky factorization methods. Report 79.02R. Dept. of Comp. Sci., Chalmers University of Technology, Goteborg, Sweden (1979)Google Scholar
  8. 8.
    Gustafsson, I., Lindskog, G.: On parallel solution of linear elasticity problems: Part I: Theory. Numer. Lin. Alg. Appl. 5, 123–139 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lazarov, R.D., Margenov, S.D.: On a two-level parallel MIC(0) preconditioning of Crouzeuz-Raviart non-conforming FEM systems. In: Dimov, I.T., et al. (eds.) NMA 2002. LNCS, vol. 2542, pp. 192–201. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes Element. Numerical Methods for Partial Differential Equations 8(2), 97–112 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Yavor Vutov
    • 1
  1. 1.Institute for Parallel Processing, Bulgarian Academy of Sciences 

Personalised recommendations