Skip to main content

Homeomorphic Manifold Analysis: Learning Decomposable Generative Models for Human Motion Analysis

  • Conference paper
Dynamical Vision (WDV 2006, WDV 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4358))

Abstract

If we consider the appearance of human motion such as gait, facial expression and gesturing, most of such activities result in nonlinear manifolds in the image space. Although the intrinsic body configuration manifolds might be very low in dimensionality, the resulting appearance manifold is challenging to model given various aspects that affects the appearance such as the view point, the person shape and appearance, etc. In this paper we learn decomposable generative models that explicitly decompose the intrinsic body configuration as a function of time from other conceptually orthogonal aspects that affects the appearance such as the view point, the person performing the action, etc. The frameworks is based on learning nonlinear mappings from a conceptual representation of the motion manifold that is homeomorphic to the actual manifold and decompose other sources of variation in the mapping coefficient space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A., Triggs, B.: 3d human pose from silhuettes by relevance vector regression. In: Proc. CVPR, vol. 2, pp. 882–888 (2004)

    Google Scholar 

  2. Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 45–58. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Brand, M.: Shadow puppetry. In: Proc. ICCV, pp. 1237–1244 (1999)

    Google Scholar 

  4. Brand, M., Huang, K.: A unifying theorem for spectral embedding and clustering. In: Proc. of the Ninth International Workshop on AI and Statistics (2003)

    Google Scholar 

  5. Bregler, C., Omohundro, S.M.: Nonlinear manifold learning for visual speech recognition. In: Proc. ICCV, pp. 494–499 (1995)

    Google Scholar 

  6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: Their training and application. CVIU 61(1), 38–59 (1995)

    Google Scholar 

  7. Elgammal, A., Lee, C.-S.: Inferring 3d body pose from silhouettes using activity manifold learning. In: Proc. CVPR, vol. 2, pp. 681–688 (2004)

    Google Scholar 

  8. Elgammal, A., Lee, C.-S.: Separating style and content on a nonlinear manifold. In: Proc. CVPR, vol. 1, pp. 478–485 (2004)

    Google Scholar 

  9. Fablet, R., Black, M.J.: Automatic detection and tracking of human motion with a view-based representation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 476–491. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Technical Report TR-01-18, Carnegie Mellon University (2001)

    Google Scholar 

  11. Howe, N.R., Leventon, M.E., Freeman, W.T.: Bayesian reconstruction of 3d human motion from single-camera video. In: Proc. NIPS (1999)

    Google Scholar 

  12. De Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposiiton. SIAM Journal On Matrix Analysis and Applications 21 (4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(r1, r2,..., rn) approximation of higher-order tensors. SIAM Journal On Matrix Analysis and Applications 21(4), 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mori, G., Malik, J.: Estimating human body configurations using shape context matching. In: Proc. ECCV, pp. 666–680 (2002)

    Google Scholar 

  15. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  16. Murase, H., Nayar, S.: Visual learning and recognition of 3d objects from appearance. IJCV 14, 5–24 (1995)

    Article  Google Scholar 

  17. Poggio, T., Girosi, F.: Networks for approximation and learning. Proceedings of the IEEE 78(9), 1481–1497 (1990)

    Article  Google Scholar 

  18. Rosales, R., Athitsos, V., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: Proc. ICCV, pp. 378–387 (2001)

    Google Scholar 

  19. Rosales, R., Sclaroff, S.: Specialized mappings and the estimation of human body pose from a single image. In: Workshop on Human Motion, pp. 19–24 (2000)

    Google Scholar 

  20. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Sciene 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  21. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  22. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: Proc. ICCV, pp. 750–759 (2003)

    Google Scholar 

  23. Sminchisescu, C., Jepson, A.: Generative modeling of continuous non-linearly embedded visual inference. In: Proc. ICML, pp. 140–147 (2004)

    Google Scholar 

  24. Tenenbaum, J.: Mapping a manifold of perceptual observations. In: Proc. NIPS, vol. 10, pp. 682–688 (1998)

    Google Scholar 

  25. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with biliear models. Neural Computation 12, 1247–1283 (2000)

    Article  Google Scholar 

  26. Toyama, K., Blake, A.: Probabilistic tracking in a metric space. In: Proc. ICCV, pp. 50–59 (2001)

    Google Scholar 

  27. Vasilescu, M.A.O.: Human motion signatures: Analysis, synthesis,recogntion. In: Proc. ICPR, vol. 3, pp. 456–460 (2002)

    Google Scholar 

  28. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subspace analysis of image ensembles. In: Proc. CVPR, pp. 93–99 (2003)

    Google Scholar 

  29. Wang, Q., Xu, G., Ai, H.: Learning object intrinsic structure for robust visual tracking. In: Proc. CVPR, vol. 2, pp. 227–233 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

René Vidal Anders Heyden Yi Ma

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lee, CS., Elgammal, A. (2007). Homeomorphic Manifold Analysis: Learning Decomposable Generative Models for Human Motion Analysis. In: Vidal, R., Heyden, A., Ma, Y. (eds) Dynamical Vision. WDV WDV 2006 2005. Lecture Notes in Computer Science, vol 4358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70932-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70932-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70931-2

  • Online ISBN: 978-3-540-70932-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics