Skip to main content

Overview of Artificial Immune Systems for Multi-objective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

Evolutionary algorithms have become a very popular approach for multiobjective optimization in many fields of engineering. Due to the outstanding performance of such techniques, new approaches are constantly been developed and tested to improve convergence, tackle new problems, and reduce computational cost. Recently, a new class of algorithms, based on ideas from the immune system, have begun to emerge as problem solvers in the evolutionary multiobjective optimization field. Although all these immune algorithms present unique, individual characteristics, there are some trends and common characteristics that, if explored, can lead to a better understanding of the mechanisms governing the behavior of these techniques. In this paper we propose a common framework for the description and analysis of multiobjective immune algorithms.

Keywords

  • Pareto Front
  • Multiobjective Optimization
  • Nondominated Solution
  • Immune Network
  • Immune Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, A.K., Lichtman, A.H.: Cellular and Molecular Immunology (paperback), 5th edn. Saunders, Philadelphia (March 2005)

    Google Scholar 

  2. Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems. In: 1st International Conference on Artificial Immune Systems, University of Kent at Canterbury, England, September, pp. 141–148 (2002)

    Google Scholar 

  3. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger Theory: The Link between AIS and IDS? In: 2nd International Conference on Artificial Immune Systems, Edinburgh, UK, September 1-3, pp. 147–155 (2003)

    Google Scholar 

  4. Balicki, J.: Multi-criterion evolutionary algorithm with model of the immune system to handle constraints for task assignments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 394–399. Springer, Heidelberg (2004)

    Google Scholar 

  5. Campelo, F., Guimarães, F.G., Saldanha, R.R., Igarashi, H., Noguchi, S., Lowther, D.A., Ramirez, J.A.: A novel multiobjective immune algorithm using nondominated sorting. In: 11th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, eggauberg, Austria (2004)

    Google Scholar 

  6. Chueh, C.-H.: An Immune Algorithm for Engineering Optimization, PhD thesis, Department of Mechanical Engineering, Tatung University, Taipei, Taiwan, July (2004)

    Google Scholar 

  7. Coello, C.A.C., Cruz-Cortés, N.: An approach to solve multiobjective optimization problems based on an artificial immune system. In: 1st International Conference on Artificial Immune Systems, University of Kent at Canterbury, England, September, pp. 212–221 (2002)

    Google Scholar 

  8. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (March 2002)

    MATH  Google Scholar 

  9. Coello, C.A.C., Cruz-Cortés, N.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)

    CrossRef  Google Scholar 

  10. Coello, C.A.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)

    CrossRef  Google Scholar 

  11. Coello, C.A.C.: EMO repository. At: http://delta.cs.cinvestav.mx/~ccoello/EMOO

  12. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for multiobjective optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  13. Cutello, V., Narzisi, G., Nicosia, G.: A class of pareto archived evolution strategy algorithms using immune inspired operators for ab-initio protein structure prediction. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) Applications of Evolutionary Computing. LNCS, vol. 3449, pp. 54–63. Springer, Heidelberg (2005)

    Google Scholar 

  14. Cruz-Cortés, N., Coello, C.A.C.: Multiobjective Optimization Using Ideas from the Clonal Selection Principle. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 158–170. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  15. Cruz-Cortés, N., Trejo-Pérez, D., Coello, C.A.C.: Handling constraints in global optimization using an artificial immune system. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 234–247. Springer, Heidelberg (2005)

    Google Scholar 

  16. Dasgupta, D., Ji, Z., Gonzalez, F.: Artificial immune system (AIS) research in the last five years. In: Proceedings of CEC 2003: IEEE Congress on Evolutionary Computation, vol. 1, pp. 123–130. IEEE, Los Alamitos (2003)

    CrossRef  Google Scholar 

  17. Dasgupta, D., Krishnakumar, K.T., Wong, D., Berry, M.: Negative Selection Algorithm for Aircraft Fault Detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)

    Google Scholar 

  18. de Castro, L.N., von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

    CrossRef  Google Scholar 

  19. de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proceedings of CEC 2002: IEEE Congress on Evolutionary Computation, vol. 1, pp. 674–699. IEEE, Los Alamitos (2002)

    Google Scholar 

  20. de Castro, L.N., Timmis, J.: Artificial immune systems: a new computational intelligence approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  21. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  23. Freschi, F.: Multi-Objective Artificial Immune System for Optimization in Electrical Engineering, PhD thesis, Department of Electrical Engineering, Politecnico di Torino, Torino, Italy (2006)

    Google Scholar 

  24. Freschi, F., Repetto, M.: VIS: an artificial immune network for multi-objective optimization. Engineering Optimization 38(8), 975–996 (2006)

    CrossRef  Google Scholar 

  25. Freschi, F., Repetto, M.: Multiobjective optimization by a modified artificial immune system algorithm. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 248–261. Springer, Heidelberg (2005)

    Google Scholar 

  26. Guimarães, F.G., Campelo, F., Saldanha, R.R., Igarashi, H., Takahashi, R.H.C., Ramirez, J.A.: A multiobjective proposal for the TEAM benchmark problem 22. IEEE Transactions on Magnetics 42(4), 1471–1474 (2006)

    CrossRef  Google Scholar 

  27. Jiao, L., Gong, M., Shang, R., Du, H., Lu, B.: Clonal selection with immune dominance and anergy based multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 474–489. Springer, Heidelberg (2005)

    Google Scholar 

  28. Kim, J., Bentley, P.: Negative selection and niching by an artificial immune system for network intrusion detection. In: Brave, S., Wu, A.S. (eds.) Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference, Orlando, Florida, pp. 149–158 (1999)

    Google Scholar 

  29. Knowles, J.D., Corne, D.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    CrossRef  Google Scholar 

  30. Kurapati, A., Azarm, S.: Immune network simulation with multiobjective genetic algorithms for multidisciplinary design optimization. Engineering Optimization 33(2), 245–260 (2000)

    CrossRef  Google Scholar 

  31. Lu, B., Jiao, L., Du, H., Gong, M.: IFMOA: immune forgetting multiobjective optimization algorithm. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 399–408. Springer, Heidelberg (2005)

    Google Scholar 

  32. Luh, G-C., Chueh, C-H., Liu, W-W.: MOIA: multi-objective immune algorithm. Engineering Optimization 35(2), 143–164 (2003)

    CrossRef  MathSciNet  Google Scholar 

  33. Luh, G-C., Chueh, C-H., Liu, W-W.: Multi-objective optimal design of truss structure with immune algorithm. Computers and Structures 82, 829–844 (2004)

    CrossRef  MathSciNet  Google Scholar 

  34. Ma, W.P., Jiao, L., Gong, M., Liu, F.: An novel artificial immune systems multi-objective optimization algorithm for 0/1 knapsack problems. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 793–798. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  35. Matzinger, P.: Tolerance Danger and the Extended Family. Annual reviews of Immunology 12, 991–1045 (1994)

    Google Scholar 

  36. Singh, S.: Anomaly detection using negative selection based on the r-contiguous matching rule. In: 1st International Conference on Artificial Immune Systems, University of Kent at Canterbury, England, September, pp. 99–106 (2002)

    Google Scholar 

  37. Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications, 1st edn. Advanced Information and Knowledge Processing. Springer, Heidelberg (May 2005)

    MATH  Google Scholar 

  38. Wang, X.L., Mahfouf, M.: ACSAMO: an adaptive multiobjective optimization algorithm using the clonal selection principle. In: 2nd European Symposium on Nature-inspired Smart Information Systems, Puerto de la Cruz, Tenerife, Spain, November 29 - December 1 (2006)

    Google Scholar 

  39. Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural Optimization 18(2-3), 85–94 (1999)

    CrossRef  Google Scholar 

  40. Zhang, X., Lu, B., Gou, S., Jiao, L.: Immune multiobjective optimization algorithm for unsupervised feature selection. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 484–494. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  41. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical report; Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Campelo, F., Guimarães, F.G., Igarashi, H. (2007). Overview of Artificial Immune Systems for Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics