Skip to main content

The Multiple Multi Objective Problem – Definition, Solution and Evaluation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

Considering external parameters during any evaluation leads to an optimization problem which has to handle several concurrent multi objective problems at once. This novel challenge, the Multiple Multi Objective Problem M-MOP, is defined and analyzed. Guidelines and metrics for the development of M-MOP optimizers are generated and exemplary demonstrated at an extended version of Deb’s NSGA-II algorithm. The relationship to the classical MOPs is highlighted and the usage of performance metrics for the M-MOP is discussed. Due to the increased number of dimensions the M-MOP represents a complex optimization task that should be settled in the optimization community.

Keywords

  • Multiple Multi Optimization Problem M-MOP
  • Perform-ance Evaluation
  • Genetic Optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  2. Coello, C., Veldhuizen, D., Lamont, G.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  3. Fisher, R., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., Trucco, E.: Dictionary of computer vision and image processing. Wiley, Chichester (2005)

    Google Scholar 

  4. Draper, B.: From knowledge bases to markov models to pca. In: Invited talk for the Workshop on Computer Vision System Control Architectures (held in conjunction with ICVS), Graz, Austria (2003)

    Google Scholar 

  5. Leonardis, A., Bischof, H.: Robust recognition using eigenimages. Computer Vision and Image Understanding: CVIU 78(1), 99–118 (2000), citeseer.ist.psu.edu/leonardis97robust.html

    CrossRef  Google Scholar 

  6. Obdrzálek, S., Matas, J.: Sub-linear indexing for large scale object recognition. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 1–10 (2005)

    Google Scholar 

  7. Appenzeller, G., Crowley, J.: Automatic parameter control for experimental evaluation of visual systems. In: Proceedings of the Asian Computer Vision Conference, Singapour (1995), citeseer.ist.psu.edu/deb00fast.html

  8. Forstner, W.: Pros and cons against performance characterization of vision algorithms (1996)

    Google Scholar 

  9. Ponweiser, W., Vincze, M.: Robust handling of multiple multi-objective optimisations. In: Accepted for the International Workshop on Biologically-Inspired Optimisation Methods for Parallel and Distributed Architectures: Algorithms, Systems and Applications (to appear, 2006)

    Google Scholar 

  10. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  11. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) ICGA, pp. 93–100. Lawrence Erlbaum Associates, Mahwah (1985)

    Google Scholar 

  12. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: ICGA, pp. 416–423. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  13. Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, Mayflower Hotel, Washington D.C., USA, 6-9 1999, pp. 98–105. IEEE Computer Society Press, Los Alamitos (1999), citeseer.ist.psu.edu/knowles99pareto.html

    Google Scholar 

  14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

  15. Knowles, J., Corne, D.: On metrics for comparing non-dominated sets. In: Congress on Evolutionary Computation (CEC 2002) (2002)

    Google Scholar 

  16. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 878–885. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review (2002)

    Google Scholar 

  18. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Wright-Patterson AFB, OH (1999)

    Google Scholar 

  19. Czyzak, P., Jaszkiewicz, A.: Pareto-simulated annealing – a metaheuristic technique for multi-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 7(1), 34–47 (1998)

    CrossRef  MATH  Google Scholar 

  20. Ishibuchi, H., Narukawa, K.: Recombination of similar parents in emo algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 265–279. Springer, Heidelberg (2005)

    Google Scholar 

  21. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Shaker Verlag, Aachen (1999)

    Google Scholar 

  22. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimization. Technical Report 2002, KanGAL Report (2002)

    Google Scholar 

  23. Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Google Scholar 

  24. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  25. Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Proceedings, Third International Conference on Computer Vision, pp. 390–393 (1990)

    Google Scholar 

  26. Roobaert, D., Zillich, M., Eklundh, J.-O.: A pure learning approach to background-invariant object recognition using pedagogical support vector learning. CVPR 2, 351–357 (2001)

    Google Scholar 

  27. Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.): EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ponweiser, W., Vincze, M. (2007). The Multiple Multi Objective Problem – Definition, Solution and Evaluation. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics