Abstract
Considering external parameters during any evaluation leads to an optimization problem which has to handle several concurrent multi objective problems at once. This novel challenge, the Multiple Multi Objective Problem M-MOP, is defined and analyzed. Guidelines and metrics for the development of M-MOP optimizers are generated and exemplary demonstrated at an extended version of Deb’s NSGA-II algorithm. The relationship to the classical MOPs is highlighted and the usage of performance metrics for the M-MOP is discussed. Due to the increased number of dimensions the M-MOP represents a complex optimization task that should be settled in the optimization community.
Keywords
- Multiple Multi Optimization Problem M-MOP
- Perform-ance Evaluation
- Genetic Optimization
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)
Coello, C., Veldhuizen, D., Lamont, G.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic, Dordrecht (2002)
Fisher, R., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., Trucco, E.: Dictionary of computer vision and image processing. Wiley, Chichester (2005)
Draper, B.: From knowledge bases to markov models to pca. In: Invited talk for the Workshop on Computer Vision System Control Architectures (held in conjunction with ICVS), Graz, Austria (2003)
Leonardis, A., Bischof, H.: Robust recognition using eigenimages. Computer Vision and Image Understanding: CVIU 78(1), 99–118 (2000), citeseer.ist.psu.edu/leonardis97robust.html
Obdrzálek, S., Matas, J.: Sub-linear indexing for large scale object recognition. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 1–10 (2005)
Appenzeller, G., Crowley, J.: Automatic parameter control for experimental evaluation of visual systems. In: Proceedings of the Asian Computer Vision Conference, Singapour (1995), citeseer.ist.psu.edu/deb00fast.html
Forstner, W.: Pros and cons against performance characterization of vision algorithms (1996)
Ponweiser, W., Vincze, M.: Robust handling of multiple multi-objective optimisations. In: Accepted for the International Workshop on Biologically-Inspired Optimisation Methods for Parallel and Distributed Architectures: Algorithms, Systems and Applications (to appear, 2006)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) ICGA, pp. 93–100. Lawrence Erlbaum Associates, Mahwah (1985)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: ICGA, pp. 416–423. Morgan Kaufmann, San Francisco (1993)
Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, Mayflower Hotel, Washington D.C., USA, 6-9 1999, pp. 98–105. IEEE Computer Society Press, Los Alamitos (1999), citeseer.ist.psu.edu/knowles99pareto.html
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Knowles, J., Corne, D.: On metrics for comparing non-dominated sets. In: Congress on Evolutionary Computation (CEC 2002) (2002)
Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 878–885. IEEE Computer Society Press, Los Alamitos (2003)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review (2002)
Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Wright-Patterson AFB, OH (1999)
Czyzak, P., Jaszkiewicz, A.: Pareto-simulated annealing – a metaheuristic technique for multi-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 7(1), 34–47 (1998)
Ishibuchi, H., Narukawa, K.: Recombination of similar parents in emo algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 265–279. Springer, Heidelberg (2005)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Shaker Verlag, Aachen (1999)
Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimization. Technical Report 2002, KanGAL Report (2002)
Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)
Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Proceedings, Third International Conference on Computer Vision, pp. 390–393 (1990)
Roobaert, D., Zillich, M., Eklundh, J.-O.: A pure learning approach to background-invariant object recognition using pedagogical support vector learning. CVPR 2, 351–357 (2001)
Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.): EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Ponweiser, W., Vincze, M. (2007). The Multiple Multi Objective Problem – Definition, Solution and Evaluation. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-70928-2_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70927-5
Online ISBN: 978-3-540-70928-2
eBook Packages: Computer ScienceComputer Science (R0)
