Skip to main content

Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

Optimization in changing environment is a challenging task, especially when multiple objectives are to be optimized simultaneously. The basic idea to address dynamic optimization problems is to utilize history information to guide future search. In this paper, two strategies for population re-initialization are introduced when a change in the environment is detected. The first strategy is to predict the new location of individuals from the location changes that have occurred in the history. The current population is then partially or completely replaced by the new individuals generated based on prediction. The second strategy is to perturb the current population with a Gaussian noise whose variance is estimated according to previous changes. The prediction based population re-initialization strategies, together with the random re-initialization method, are then compared on two bi-objective test problems. Conclusions on the different re-initialization strategies are drawn based on the preliminary empirical results.

Keywords

  • Pareto Front
  • Multiobjective Optimization
  • Multiobjective Optimization Problem
  • Dynamic Optimization Problem
  • Uncertain Objective

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branke, J.: Evolutionary Optimization in Dynamic Environments. Genetic Algorithms and Evolutionary Computation, vol. 3. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  2. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    CrossRef  Google Scholar 

  3. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing 9(11), 815–834 (2005)

    CrossRef  MATH  Google Scholar 

  4. Jin, Y., Sendhoff, B.: Constructing dynamic test problems using the multi-objective optimization concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

    Google Scholar 

  5. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation 8(5), 425–442 (2004)

    CrossRef  Google Scholar 

  6. Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary optimization of dynamic multiobjective functions. Technical Report CI-204/06, University of Dortmund (2006)

    Google Scholar 

  7. Deb, K.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  MathSciNet  Google Scholar 

  8. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation and Control, CIMNE 2002, Barcelona, Spain, pp. 95–100 (2002)

    Google Scholar 

  9. Hughes, E.J.: Multiple single objective Pareto sampling. In: Proceedings of the Congress on Evolutionary Computation (CEC 2003), 8-12 December, pp. 2678–2684. IEEE Computer Society Press, Los Alamitos (2003)

    CrossRef  Google Scholar 

  10. Zeng, S., Yao, S., Kang, L., Liu, Y.: An efficient multi-objective evolutionary algorithm: OMOEA-II. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 108–119. Springer, Heidelberg (2005)

    Google Scholar 

  11. Zeng, S., Chen, G., Zhang, L., Shi, H., de Garis, H., Ding, L., Kang, L.: A dynamic multi-objective evolutionary algorithm based on an orthogonal design. In: Proceedings of the Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, July 2006, pp. 2588–2595. IEEE Press, Vancouver (2006)

    Google Scholar 

  12. Farina, M., Amato, P.: Linked interpolation-optimization strategies for multicriteria optimization problems. Soft Computing 9(1), 54–65 (2005)

    CrossRef  Google Scholar 

  13. Amato, P., Farina, M.: An ALife-inspired evolutionary algorithm for dynamic multiobjective optimization problems. In: World Conference on Soft Computing (2003)

    Google Scholar 

  14. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, July, pp. 1201–1208 (2006)

    Google Scholar 

  15. Hatzakis, I., Wallace, D.: Topology of anticipatory populations for evolutionary dynamic multi-objective optimization. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, USA, September (2006)

    Google Scholar 

  16. Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)

    Google Scholar 

  17. Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)

    Google Scholar 

  18. Zhou, A., Zhang, Q., Jin, Y., Tsang, E., Okabe, T.: A model-based evolutionary algorithm for bi-objective optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC 2005), Edinburgh, U.K, September 2005, pp. 2568–2575. IEEE Press, Los Alamitos (2005)

    CrossRef  Google Scholar 

  19. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, July 2006, pp. 3234–3241. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  20. Zhang, Q., Zhou, A., Jin, Y.: Modelling the regularity in estimation of distribution algorithm for continuous multi-objective evolutionary optimization with variable linkages. In: IEEE Transactions on Evolutionary Computation, IEEE Computer Society Press, Los Alamitos (Submitted, 2006)

    Google Scholar 

  21. Zhou, A., Zhang, Q., Jin, Y., Sendhoff, B., Tsang, E.: Modelling the population distribution in multi-objective optimization by generative topographic mapping. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193, pp. 443–452. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  22. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. Neural Computation 9(7), 1493–1516 (1997)

    CrossRef  Google Scholar 

  23. Chatfield, C.: The Analysis of Time Series: An Introduction. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  24. Li, H., Zhang, Q.: A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  25. Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report 214, Computer Engineering and Networks Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland (2006)

    Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E. (2007). Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics