Skip to main content

Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

The scalability of EMO algorithms is an issue of significant concern for both algorithm developers and users. A key aspect of the issue is scalability to objective space dimension, other things being equal. Here, we make some observations about the efficiency of search in discrete spaces as a function of the number of objectives, considering both uncorrelated and correlated objective values. Efficiency is expressed in terms of a cardinality-based (scaling-independent) performance indicator. Considering random sampling of the search space, we measure, empirically, the fraction of the true PF covered after p iterations, as the number of objectives grows, and for different correlations. A general analytical expression for the expected performance of random search is derived, and is shown to agree with the empirical results. We postulate that for even moderately large numbers of objectives, random search will be competitive with an EMO algorithm and show that this is the case empirically: on a function where each objective is relatively easy for an EA to optimize (an NK-landscape with K=2), random search compares favourably to a well-known EMO algorithm when objective space dimension is ten, for a range of inter-objective correlation values. The analytical methods presented here may be useful for benchmarking of other EMO algorithms.

Keywords

  • multiobjective optimization
  • nondominated sorting
  • nondominated ranking
  • random search
  • coverage indicator
  • inter-objective correlation
  • many objectives

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, Z.D., Chao, C.C., Hwang, H.K., Liang, W.Q.: On the Variance of the Number of Maxima in Random Vectors and Its Applications. The Annals of Applied Probability 8(3), 886–895 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Bai, Z.D., Devroye, L., Hwang, H.K., Tsai, T.H.: Maxima in hypercubes. Random Structures Algorithms 27, 290–309 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the Average Number of Maxima in a Set of Vectors and Applications. Journal of the ACM (JACM) 25(4), 536–543 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Coello Coello, C.A.: An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys 32(2), 109–143 (2000)

    CrossRef  Google Scholar 

  5. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based Selection in Evolutionary Multiobjective Optimization. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 283–290. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  7. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective Optimisation Based on Relation Favour. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)

    Google Scholar 

  8. Farina, M.: A Neural Network Based Generalized Response Surface Multiobjective Evolutionary Algorithm. In: Congress on Evolutionary Computation (CEC’2002), vol. 1, May 2002, vol. 1, pp. 956–961. IEEE Computer Society Press, Piscataway (2002)

    Google Scholar 

  9. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Technical report, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K. (1994)

    Google Scholar 

  10. Fonseca, C.M., Fleming, P.J.: On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN IV. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  11. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    CrossRef  Google Scholar 

  12. Hughes, E.J.: Multiple Single Objective Pareto Sampling. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003), vol. 4, Canberra, Australia, December 2003, pp. 2678–2684. IEEE Computer Society Press, Los Alamitos (2003)

    CrossRef  Google Scholar 

  13. Hughes, E.J.: Evolutionary many-objective optimisation: Many once or once many? In: IEEE Congress on Evolutionary Computation (CEC 2005), pp. 222–227. IEEE Computer Society Press, Los Alamitos (2005)

    CrossRef  Google Scholar 

  14. Hughes, E.J.: Assessing robustness of optimisation performance for problems with expensive evaluation functions. In: IEEE Congress on Evolutionary Computation — CEC 2006, pp. 9825–9830. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  15. Kauffman, S.A.: Adaptation on rugged fitness landscapes. In: Stein, D. (ed.) SFI Studies in the Sciences of Complexity, Lecture Volume 1, pp. 527–618. Addison-Wesley, Reading (1989)

    Google Scholar 

  16. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    CrossRef  Google Scholar 

  17. Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastive multiobjective optimizers. Technical Report TIK-Report No. 214b, Computer Engineering and Networks Laboratory, ETH Zurich (2006)

    Google Scholar 

  18. Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Compressed-objective genetic algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193, pp. 473–482. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  19. Purshouse, R.C.: On the Evolutionary Optimisation of Many Objectives. PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK (September 2003)

    Google Scholar 

  20. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Technical report, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India (1993)

    Google Scholar 

  21. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Computation and Convergence to a Pareto Front. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference, Stanford University, California, July 1998, pp. 221–228. Stanford University Bookstore (1998)

    Google Scholar 

  22. Yukish, M.: Algorithms to Identify Pareto Points in Multi-Dimensional Data Sets. PhD thesis, Pennsylvania State University, PENN, USA (2004)

    Google Scholar 

  23. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)

    Google Scholar 

  24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Knowles, J., Corne, D. (2007). Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics