Skip to main content

Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

Research within the area of Evolutionary Multi-objective Optimization (EMO) focused on two- and three-dimensional objective functions, so far. Most algorithms have been developed for and tested on this limited application area. To broaden the insight in the behavior of EMO algorithms (EMOA) in higher dimensional objective spaces, a comprehensive benchmarking is presented, featuring several state-of-the-art EMOA, as well as an aggregative approach and a restart strategy on established scalable test problems with three to six objectives. It is demonstrated why the performance of well-established EMOA (NSGA-II, SPEA2) rapidly degradates with increasing dimension. Newer EMOA like ε-MOEA, MSOPS, IBEA and SMS-EMOA cope very well with high-dimensional objective spaces. Their specific advantages and drawbacks are illustrated, thus giving valuable hints for practitioners which EMOA to choose depending on the optimization scenario. Additionally, a new method for the generation of weight vectors usable in aggregation methods is presented.

Keywords

  • Weight Vector
  • Pareto Front
  • Objective Space
  • Target Vector
  • Extremal Solution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farina, M., Amato, P.: On the optimal solution definition for many-criteria optimization problems. In: Keller, J., Nasraoui, O. (eds.) Proc. of the NAFIPS-FLINT Int’l Conf. 2002, pp. 233–238. IEEE Computer Society Press, Piscataway (2002)

    Google Scholar 

  2. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  3. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, New York (2002)

    MATH  Google Scholar 

  4. Purshouse, R.C., Fleming, P.J.: Evolutionary Multi-Objective Optimisation: An Exploratory Analysis. In: Proc. of the 2003 Congress on Evolutionary Computation (CEC’2003), vol. 3, Canberra, Australia, pp. 2066–2073. IEEE Press, Los Alamitos (2003)

    CrossRef  Google Scholar 

  5. Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One Many? In: Evolutionary Computation ’Congress (CEC’05), Edinburgh, UK, vol. 1, pp. 222–227. IEEE Press, Piscataway (2005)

    CrossRef  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  7. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  8. Deb, K., Mohan, M., Mishra, S.: A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL report 2003002, Indian Institute of Technology, Kanpur, India (2003)

    Google Scholar 

  9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-objective Optimization Test Problems. In: Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 825–830. IEEE Press, Piscataway (2002)

    Google Scholar 

  10. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  11. Naujoks, B., Beume, N., Emmerich, M.: Multi-objective optimisation using S-metric selection: Application to three-dimensional solution spaces. In: Evolutionary Computation Congress (CEC’05), Edinburgh, UK, pp. 1282–1289. IEEE Press, Piscataway (2005)

    CrossRef  Google Scholar 

  12. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms. IEEE Transactions On Evolutionary Computation 7(5), 503–515 (2003)

    CrossRef  Google Scholar 

  13. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zürich, Switzerland (2001)

    Google Scholar 

  14. Silverman, B.W.: Density estimation for statistics and data analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  15. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    CrossRef  Google Scholar 

  16. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Zalzala, A., Eberhart, R. (eds.) Congress on Evolutionary Computation (CEC2000), vol. 2, pp. 1010–1016. IEEE Press, Piscataway (2000)

    Google Scholar 

  17. Hughes, E.J.: Multiple Single Objective Pareto Sampling. In: Congress on Evolutionary Computation (CEC’03), IEEE Press, Piscataway (2003)

    Google Scholar 

  18. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on non-local use of selection information. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN III. LNCS, vol. 866, pp. 189–198. Springer, Heidelberg (1994)

    Google Scholar 

  19. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. IEEE Computational Intelligence Magazine 9(2), 159–195 (2001)

    Google Scholar 

  20. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Google Scholar 

  21. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Google Scholar 

  22. Beume, N., Rudolph, G.: Faster S-Metric Calculation by Considering Dominated Hypervolume as Klee’s Measure Problem. In: International Conference on Computational Intelligence (CI (2006) (in print, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wagner, T., Beume, N., Naujoks, B. (2007). Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics