Skip to main content

A Multiobjectivization Approach for Vehicle Routing Problems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

This paper presents a new approach for vehicle routing problems (VRPs), which are defined as problems of minimizing the total travel distance. The proposed approach treats VRPs as multi-objective problems using the concept of multiobjectivization. The multiobjectivization approach translates single-objective optimization problems into multi-objective optimization problems and then applies EMO to the translated problem. In the proposed approach, a newly defined objective related to assignment of customers is added, because the assignment has a more important influence on the search results than routing in VRPs. We investigated the characteristics and effectiveness of the proposed approaches by comparing the performance on conventional approaches and the proposed approaches.

Keywords

  • Vehicle Routing Problems(VRPs)
  • Multiobjectivization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bent, R., Van Hentenryck, P.: A two stage hybrid local search for the vehicle routing problem with time windows. Transportation Science 38, 515–530 (2004)

    CrossRef  Google Scholar 

  2. Braysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: Route construction and local search algorithms. Transportation Science 39(1), 104–118 (2005)

    CrossRef  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  4. Handl, J., Knowles, J.: Exploiting the Trade-Off—The Benefits of Multiple Objectives in Data Clustering. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 547–560. Springer, Heidelberg (2005)

    Google Scholar 

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  6. Doerner, K.F., Hartl, R.F., Lucka, M.: A parallel version of the d-ant algorithm for the vehicle routing problem. In: Theory an Applications, pp. 109–118 (2005)

    Google Scholar 

  7. Knowles, D., Watson, A., Corne, W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 268–282. Springer, Heidelberg (2001)

    Google Scholar 

  8. Nanry, W.P., Barnes, J.W.: Solving the pickup and delivery problem with time windows using reactive tabu search. Transportation Research Part B 34, 107–121 (2000)

    CrossRef  Google Scholar 

  9. Jozefowiez, N., Semet, F., Talbi, E.: Parallel and Hybrid Models for Multi-objective Optimization: Application to the Vehicle Routing Problem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VII. LNCS, vol. 2439, pp. 271–280. Springer, Heidelberg (2002)

    Google Scholar 

  10. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows - part ii: Genetic search. INFORMS Journal on Computing 8, 165–172 (1996)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Watanabe, S., Sakakibara, K. (2007). A Multiobjectivization Approach for Vehicle Routing Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics