Skip to main content

Using Multiobjective Evolutionary Algorithms to Assess Biological Simulation Models

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

We introduce an important general Multiobjective Evolutionary Algorithm (MOEA) application – assessment of mechanistic simulation models in biology. These models are often developed to investigate the processes underlying biological phenomena. The proposed model structure must be assessed to reveal if it adequately describes the phenomenon. Objective functions are defined to measure how well the simulations reproduce specific phenomenon features. They may be continuous or binary-valued, e.g. constraints, depending on the quality and quantity of phenomenon data. Assessment requires estimating and exploring the model’s Pareto frontier. To illustrate the problem, we assess a model of shoot growth in pine trees using an elitist MOEA based on Nondominated Sorting in Genetic Algorithms. The algorithm uses the partition induced on the parameter space by the binary-valued objectives. Repeating the assessment with tighter constraints revealed model structure improvements required for a more accurate simulation of the biological phenomenon.

Keywords

  • Multiobjective optimization
  • Pareto frontier
  • binary discrepancy measures
  • process model
  • mechanistic model
  • model assessment
  • structural inference
  • elitism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sorrensen-Cothern, K.A., Ford, E.D., Sprugel, D.: A process based model of competition for light incorporating plasticity through modular foliage and crown development. Ecological Monographs 63, 277–304 (1993)

    CrossRef  Google Scholar 

  2. Reynolds, J.H., Ford, E.D.: Multi-criteria assessment of ecological process models. Ecology 80(2), 538–553 (1999)

    CrossRef  Google Scholar 

  3. Wood, S.N., Thomas, M.B.: Super-sensitivity to structure in biological models. Proceedings of the Royal Society of London B 266, 565–570 (1999)

    CrossRef  Google Scholar 

  4. Komuro, R., Ford, E.D., Reynolds, J.H.: The use of multi-criteria assessment in developing a process model. Ecological Modelling 197(3-4), 320–330 (2006)

    CrossRef  Google Scholar 

  5. Reynolds, J.H., Golinelli, D.: Multi-criteria inference for process models: structural and parametric inference for a stochastic model of feline hematopoeisis. In: 2004 JSM Proceedings, pp. 2978–2986. American Statistical Association (2004)

    Google Scholar 

  6. Miguel, I., Shen, Q.: Hard, flexible and dynamic constraint satisfaction. The Knowledge Engineering Review 14(3), 199–220 (1999)

    CrossRef  Google Scholar 

  7. Komuro, R.: Multi-Objective Evolutionary Algorithms for Ecological Process Models. PhD thesis, University of Washington, Seattle, Washington (2005)

    Google Scholar 

  8. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)

    CrossRef  Google Scholar 

  9. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  10. Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched Pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithm Laboratory (IlliGAL), University of Illinois at Urbana-Champaign, Urbana, Illinois (1993)

    Google Scholar 

  11. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    CrossRef  Google Scholar 

  12. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    CrossRef  Google Scholar 

  13. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  14. Coello Coello, C.A.: Guest editorial: Special issue on evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 7(2), 97–99 (2003)

    CrossRef  Google Scholar 

  15. Parks, G.T., Miller, I.: Selective breeding in a multiobjective genetic algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 250–259. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  16. Knowles, J., Corne, D.: The Pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 98–105. IEEE Computer Society Press, Piscataway (1999)

    Google Scholar 

  17. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A first elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK Report 103, Computer Engineering and Communication Networks Lab, Swiss Federal Institute of Technology, Zurich, Switzerland (2001)

    Google Scholar 

  19. Costa, L., Oliveira, P.: An adaptive sharing elitist evolution strategy for multiobjective optimization. Evolutionary Computation 11(4), 417–438 (2003)

    CrossRef  Google Scholar 

  20. Hornberger, G.M., Spear, R.C.: An approach to the preliminary analysis of environmental systems. Journal of Environmental Management 12, 7–18 (1981)

    Google Scholar 

  21. Ford, E.D., Turley, M., Reynolds, J.H.: User’s Manual: The Pareto Optimal Model Assessment Cycle Using Evolutionary Computation. National Research Center for Statistics and the Environment, Seattle, Washington (2001)

    Google Scholar 

  22. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd edn. IEEE Computer Society Press, Piscataway (2000)

    Google Scholar 

  23. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  24. Michalewicz, Z.: ”Genetic Algorithms + Data Structures = Evolutionary Programs”, 3rd edn. Springer, London (1996)

    Google Scholar 

  25. Milne, R., Smith, S.K., Ford, E.D.: An automatic system for measuring shoot length in Sitka spruce and other plant species. Applied Ecology 14, 523–529 (1977)

    CrossRef  Google Scholar 

  26. Monteith, J.L.: Evaporation and environment. In: Fogg, G.E. (ed.) The State and Movement of Water in Living Organisms (Symposia of the Society for Experimental Biology, Number XIX), pp. 205–234. Cambridge University Press, Cambridge (1965)

    Google Scholar 

  27. Ford, E.D., Deans, J.D., Milne, R.: Shoot extension in Picea sitchensis I. seasonal variation within a forest canopy. Annals of Botany 60, 531–542 (1987)

    Google Scholar 

  28. Milne, R., Ford, E.D., Deans, J.D.: Time lags in the water relations of Sitka spruce. Forest Ecology and Management 5, 1–25 (1983)

    CrossRef  Google Scholar 

  29. Milne, R., Deans, J.D., Ford, E.D., Jarvis, P.G., Leverenz, J., Whitehead, D.: A comparison of two methods of estimating transpiration rates from a Sitka spruce plantation. Boundary-Layer Meteorology 32, 155–175 (1985)

    CrossRef  Google Scholar 

  30. Wiegand, T., Jeltsch, F., Hanski, I., Grimm, V.: Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and conservation practice. Oikos 100, 209–222 (2003)

    CrossRef  Google Scholar 

  31. Deans, J.D.: Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation. Plant Soil 52(2), 195–208 (1979)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Komuro, R., Reynolds, J.H., Ford, E.D. (2007). Using Multiobjective Evolutionary Algorithms to Assess Biological Simulation Models. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics