Abstract
We introduce an important general Multiobjective Evolutionary Algorithm (MOEA) application – assessment of mechanistic simulation models in biology. These models are often developed to investigate the processes underlying biological phenomena. The proposed model structure must be assessed to reveal if it adequately describes the phenomenon. Objective functions are defined to measure how well the simulations reproduce specific phenomenon features. They may be continuous or binary-valued, e.g. constraints, depending on the quality and quantity of phenomenon data. Assessment requires estimating and exploring the model’s Pareto frontier. To illustrate the problem, we assess a model of shoot growth in pine trees using an elitist MOEA based on Nondominated Sorting in Genetic Algorithms. The algorithm uses the partition induced on the parameter space by the binary-valued objectives. Repeating the assessment with tighter constraints revealed model structure improvements required for a more accurate simulation of the biological phenomenon.
Keywords
- Multiobjective optimization
- Pareto frontier
- binary discrepancy measures
- process model
- mechanistic model
- model assessment
- structural inference
- elitism
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Sorrensen-Cothern, K.A., Ford, E.D., Sprugel, D.: A process based model of competition for light incorporating plasticity through modular foliage and crown development. Ecological Monographs 63, 277–304 (1993)
Reynolds, J.H., Ford, E.D.: Multi-criteria assessment of ecological process models. Ecology 80(2), 538–553 (1999)
Wood, S.N., Thomas, M.B.: Super-sensitivity to structure in biological models. Proceedings of the Royal Society of London B 266, 565–570 (1999)
Komuro, R., Ford, E.D., Reynolds, J.H.: The use of multi-criteria assessment in developing a process model. Ecological Modelling 197(3-4), 320–330 (2006)
Reynolds, J.H., Golinelli, D.: Multi-criteria inference for process models: structural and parametric inference for a stochastic model of feline hematopoeisis. In: 2004 JSM Proceedings, pp. 2978–2986. American Statistical Association (2004)
Miguel, I., Shen, Q.: Hard, flexible and dynamic constraint satisfaction. The Knowledge Engineering Review 14(3), 199–220 (1999)
Komuro, R.: Multi-Objective Evolutionary Algorithms for Ecological Process Models. PhD thesis, University of Washington, Seattle, Washington (2005)
Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann, San Mateo (1993)
Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched Pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithm Laboratory (IlliGAL), University of Illinois at Urbana-Champaign, Urbana, Illinois (1993)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)
Coello Coello, C.A.: Guest editorial: Special issue on evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 7(2), 97–99 (2003)
Parks, G.T., Miller, I.: Selective breeding in a multiobjective genetic algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 250–259. Springer, Heidelberg (1998)
Knowles, J., Corne, D.: The Pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 98–105. IEEE Computer Society Press, Piscataway (1999)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A first elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK Report 103, Computer Engineering and Communication Networks Lab, Swiss Federal Institute of Technology, Zurich, Switzerland (2001)
Costa, L., Oliveira, P.: An adaptive sharing elitist evolution strategy for multiobjective optimization. Evolutionary Computation 11(4), 417–438 (2003)
Hornberger, G.M., Spear, R.C.: An approach to the preliminary analysis of environmental systems. Journal of Environmental Management 12, 7–18 (1981)
Ford, E.D., Turley, M., Reynolds, J.H.: User’s Manual: The Pareto Optimal Model Assessment Cycle Using Evolutionary Computation. National Research Center for Statistics and the Environment, Seattle, Washington (2001)
Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd edn. IEEE Computer Society Press, Piscataway (2000)
Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, San Mateo (1989)
Michalewicz, Z.: ”Genetic Algorithms + Data Structures = Evolutionary Programs”, 3rd edn. Springer, London (1996)
Milne, R., Smith, S.K., Ford, E.D.: An automatic system for measuring shoot length in Sitka spruce and other plant species. Applied Ecology 14, 523–529 (1977)
Monteith, J.L.: Evaporation and environment. In: Fogg, G.E. (ed.) The State and Movement of Water in Living Organisms (Symposia of the Society for Experimental Biology, Number XIX), pp. 205–234. Cambridge University Press, Cambridge (1965)
Ford, E.D., Deans, J.D., Milne, R.: Shoot extension in Picea sitchensis I. seasonal variation within a forest canopy. Annals of Botany 60, 531–542 (1987)
Milne, R., Ford, E.D., Deans, J.D.: Time lags in the water relations of Sitka spruce. Forest Ecology and Management 5, 1–25 (1983)
Milne, R., Deans, J.D., Ford, E.D., Jarvis, P.G., Leverenz, J., Whitehead, D.: A comparison of two methods of estimating transpiration rates from a Sitka spruce plantation. Boundary-Layer Meteorology 32, 155–175 (1985)
Wiegand, T., Jeltsch, F., Hanski, I., Grimm, V.: Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and conservation practice. Oikos 100, 209–222 (2003)
Deans, J.D.: Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation. Plant Soil 52(2), 195–208 (1979)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Komuro, R., Reynolds, J.H., Ford, E.D. (2007). Using Multiobjective Evolutionary Algorithms to Assess Biological Simulation Models. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-70928-2_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70927-5
Online ISBN: 978-3-540-70928-2
eBook Packages: Computer ScienceComputer Science (R0)
