Skip to main content

Combining Linear Programming and Multiobjective Evolutionary Computation for Solving a Type of Stochastic Knapsack Problem

  • Conference paper
  • 6616 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

In this paper, the design of systems using mechanical or electrical energy-transformation devices is treated as a knapsack problem. Due to the well-known NP-hard complexity of the knapsack problem, a combination of integer linear programming and evolutionary multi-criteria optimization is presented to solve this real problem with promising experimental results.

Keywords

  • Integer Linear Programming
  • Real Problem
  • Knapsack Problem
  • Total Input
  • Pareto Frontier

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Application. John Wiley and sons, Chichester (1986)

    MATH  Google Scholar 

  2. Gandibleux, X., Sevaux, M., Sorensen, K., T’kindt, V.: Metaheuristics for multiobjective optimization. Lectures Notes in Economics and Mathematical Systems, vol. 535. Springer, Heidelberg (2004)

    Google Scholar 

  3. Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research 137(1), 1–9 (2002)

    CrossRef  MATH  Google Scholar 

  4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd, revised and extended edn. Springer, Heidelberg (1999)

    Google Scholar 

  5. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective optimization. Knowledge and Information Systems 1(3), 269–308 (1999)

    Google Scholar 

  6. Coello Coello, C.A.: Evolutionary multi-objective optimization: A critical review. In: Sarker, R., Mohammadian, M., Yao, X. (eds.) Evolutionary Optimization, pp. 117–146. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  7. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1), 1–16 (1995)

    CrossRef  Google Scholar 

  8. Horn, J.: Multicriterion decision making. In: Back, T., Fogel, D., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Oxford University Press, Oxford (1997)

    Google Scholar 

  9. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    CrossRef  Google Scholar 

  10. Pisinger, D., Toth, P.: Knapsack problems. In: Du, D., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp. 299–428. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  11. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  13. Jaskiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem: a comparative experiment. IEEE Transactions on Evolutionary Computation 6(4), 402–412 (2002)

    CrossRef  Google Scholar 

  14. Jaskiewicz, A.: On the computational efficiency of multiple objective metaheuristics. the knapsack problem case study. European Journal of Operational Research 158(2), 418–433 (2004)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mallor-Gímenez, F., Blanco, R., Azcárate, C. (2007). Combining Linear Programming and Multiobjective Evolutionary Computation for Solving a Type of Stochastic Knapsack Problem. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics