Skip to main content

Multi-objective Pole Placement with Evolutionary Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

Multi-Objective Evolutionary Algorithms (MOEA) have been succesfully applied to solve control problems. However, many improvements are still to be accomplished. In this paper a new approach is proposed: the Multi-Objective Pole Placement with Evolutionary Algorithms (MOPPEA). The design method is based upon using complex-valued chromosomes that contain information about closed-loop poles, which are then placed through an output feedback controller. Specific cross-over and mutation operators were implemented in simple but efficient ways. The performance is tested on a mixed multi-objective \(\mathcal{H}_{2}\)/\(\mathcal{H}_{\infty }\) control problem.

Keywords

  • Multi-objective control
  • Pole placement
  • Evolutionary Algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  2. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice 10, 1223–1241 (2002)

    CrossRef  Google Scholar 

  3. Fonseca, C.: Multiobjective Genetic Algorithms with Application to Control Engineering Problems. PhD thesis, Departement of Automatic Control and Systems Engineering. University of Sheffield (1995)

    Google Scholar 

  4. Whidborne, J.F., Gu, D.W., Postlethwaite, I.: Algorithms for the method of inequalities: A comparative study. In: American Control Conference, Washington (1995)

    Google Scholar 

  5. Herreros, A.: Diseño de controladores robustos multiobjetivo por medio de algoritmos geneticos. Tesis Doctoral, Departamento de Ingenieria de Sistemas y Automatica.Universidad de Valladolid, Espana (2000)

    Google Scholar 

  6. Zakian, V.: Control systems design: a new framework. Springer, London (2005)

    Google Scholar 

  7. Molina-Cristobal, A., Griffin, I.A., Fleming, P.J., Owens, D.H.: Linear matrix inequalities and evolutionary computation. International Journal of Systems Science 37(8), 513–522 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Ho, S.-J., Ho, S.-Y., Hung, M.-H., Shu, L.-S., Huang, H.-L.: Designing Structure-Specified Mixed H2/Hinf Optimal Controllers Using an Intelligent Genetic Algorithm. IEEE Transactions on Control System Technology 13(6), 1119–1124 (2005)

    CrossRef  Google Scholar 

  9. Osyczka, A.: Multicriteria Optimization for Engineering Design. Academic Press, Cambridge (1985)

    Google Scholar 

  10. Kautsky, J., Nichols, N.K.: Robust Pole Assignment in Linear State Feedback. Int. J. Control 41, 1129–1155 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  12. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms on Test Functions of Different Difficulty. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference. Workshop Program, Orlando, Florida, pp. 121–122 (1999)

    Google Scholar 

  13. Laub, A.J., Wette, M.: Algorithms and Software for Pole Assignment and Observers. UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sánchez, G., Villasana, M., Strefezza, M. (2007). Multi-objective Pole Placement with Evolutionary Algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics