Skip to main content

ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques for Pareto-based resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the multi-objective problems they are intended to solve. This separation confers a maximum design and code reuse. ParadisEO-MOEO provides a broad range of archive-related features (such as elitism or performance metrics) and the most common Pareto-based fitness assignment strategies (MOGA, NSGA, SPEA, IBEA and more). Furthermore, parallel and distributed models as well as hybridization mechanisms can be applied to an algorithm designed within ParadisEO-MOEO using the whole version of ParadisEO. In addition, GUIMOO, a platform-independant free software dedicated to results analysis for multi-objective problems, is briefly introduced.

Keywords

  • object-oriented frameworks
  • design and code reuse
  • multi-objective optimization
  • evolutionary algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basseur, M., Seynhaeve, F., Talbi, E.-G.: Design of multi-objective evolutionary algorithms: Application to the flow-shop scheduling problem. In: Congress on Evolutionary Computation (CEC’02), Honolulu, Hawaii, USA, pp. 1151–1156 (2002)

    Google Scholar 

  2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  3. Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

    CrossRef  Google Scholar 

  4. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Optimization Problems. Kluwer Academic Publishers, New York (2002)

    Google Scholar 

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.A: Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Emmerich, M., Hosenberg, R.: TEA - A Toolbox for the Design of Parallel Evolutionary Algorithms in C++. Technical report CI-106/01, SFB 531, University of Dortmund, Germany (2001)

    Google Scholar 

  8. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proc. of the 5th International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  9. Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case Study. International Journal on Artificial Intelligence Tools 15(2), 173–194 (2006)

    CrossRef  Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  11. Goldberg, D.E., Deb, K.: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Rawlins, G. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  12. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Abor (1975)

    Google Scholar 

  13. Jourdan, L., Khabzaoui, M., Dhaenens, C., Talbi, E.-G.: A Hybrid Evolutionary Algorithm for Knowledge Discovery in Microarray Experiments. In: Olariu, S., et al. (eds.) Handbook of Bioinspired Algorithms and Applications, pp. 489–505. CRC Press, Boca Raton (2005)

    Google Scholar 

  14. Jourdan, L., Legrand, T., Talbi, E.-G., Wojkiewicz, J.-L.: Mono and Multi-objective continuous optimization for conducting polymer composites. In: ECCO/CO 2006, Porto, Portugal (2006)

    Google Scholar 

  15. Keijzer, M., Merelo, J.-J., Romero, G., Schoenauer, M.: Evolving Objects: a general purpose evolutionary computation library. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 231–244. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  16. Meunier, H., Talbi, E.-G., Reininger, P.: A multiobjective genetic algorithm for radio network optimization. In: Proc. of the 2000 Congress on Evolutionary Computation (CEC’00), pp. 317–324. IEEE Computer Society Press, Los Alamitos (2000)

    CrossRef  Google Scholar 

  17. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Grefensette, J.J. (ed.) Proc. of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, pp. 93–100 (1985)

    Google Scholar 

  18. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    CrossRef  Google Scholar 

  19. Talbi, E.-G.: A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)

    CrossRef  Google Scholar 

  20. Tan, K.C., Lee, T.H., Khoo, D., Khor, E.F., Kannan, R.S.: MOEA Toolbox for Computer Aided Multi-Objective Optimization. In: Proc. of the 2000 Congress on Evolutionary Computation (CEC’00), pp. 38–45. IEEE Computer Society Press, Los Alamitos (2000)

    CrossRef  Google Scholar 

  21. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK Report Nr. 103, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (2001)

    Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    CrossRef  Google Scholar 

  24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Liefooghe, A., Basseur, M., Jourdan, L., Talbi, EG. (2007). ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics