Abstract
This paper presents ParadisEO-MOEO, a white-box object-oriented generic framework dedicated to the flexible design of evolutionary multi-objective algorithms. This paradigm-free software embeds some features and techniques for Pareto-based resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the multi-objective problems they are intended to solve. This separation confers a maximum design and code reuse. ParadisEO-MOEO provides a broad range of archive-related features (such as elitism or performance metrics) and the most common Pareto-based fitness assignment strategies (MOGA, NSGA, SPEA, IBEA and more). Furthermore, parallel and distributed models as well as hybridization mechanisms can be applied to an algorithm designed within ParadisEO-MOEO using the whole version of ParadisEO. In addition, GUIMOO, a platform-independant free software dedicated to results analysis for multi-objective problems, is briefly introduced.
Keywords
- object-oriented frameworks
- design and code reuse
- multi-objective optimization
- evolutionary algorithms
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Basseur, M., Seynhaeve, F., Talbi, E.-G.: Design of multi-objective evolutionary algorithms: Application to the flow-shop scheduling problem. In: Congress on Evolutionary Computation (CEC’02), Honolulu, Hawaii, USA, pp. 1151–1156 (2002)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Optimization Problems. Kluwer Academic Publishers, New York (2002)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.A: Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Emmerich, M., Hosenberg, R.: TEA - A Toolbox for the Design of Parallel Evolutionary Algorithms in C++. Technical report CI-106/01, SFB 531, University of Dortmund, Germany (2001)
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proc. of the 5th International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann, San Mateo (1993)
Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case Study. International Journal on Artificial Intelligence Tools 15(2), 173–194 (2006)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)
Goldberg, D.E., Deb, K.: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Rawlins, G. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Mateo (1991)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Abor (1975)
Jourdan, L., Khabzaoui, M., Dhaenens, C., Talbi, E.-G.: A Hybrid Evolutionary Algorithm for Knowledge Discovery in Microarray Experiments. In: Olariu, S., et al. (eds.) Handbook of Bioinspired Algorithms and Applications, pp. 489–505. CRC Press, Boca Raton (2005)
Jourdan, L., Legrand, T., Talbi, E.-G., Wojkiewicz, J.-L.: Mono and Multi-objective continuous optimization for conducting polymer composites. In: ECCO/CO 2006, Porto, Portugal (2006)
Keijzer, M., Merelo, J.-J., Romero, G., Schoenauer, M.: Evolving Objects: a general purpose evolutionary computation library. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 231–244. Springer, Heidelberg (2002)
Meunier, H., Talbi, E.-G., Reininger, P.: A multiobjective genetic algorithm for radio network optimization. In: Proc. of the 2000 Congress on Evolutionary Computation (CEC’00), pp. 317–324. IEEE Computer Society Press, Los Alamitos (2000)
Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Grefensette, J.J. (ed.) Proc. of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, pp. 93–100 (1985)
Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)
Talbi, E.-G.: A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)
Tan, K.C., Lee, T.H., Khoo, D., Khor, E.F., Kannan, R.S.: MOEA Toolbox for Computer Aided Multi-Objective Optimization. In: Proc. of the 2000 Congress on Evolutionary Computation (CEC’00), pp. 38–45. IEEE Computer Society Press, Los Alamitos (2000)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK Report Nr. 103, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (2001)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Liefooghe, A., Basseur, M., Jourdan, L., Talbi, EG. (2007). ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-70928-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70927-5
Online ISBN: 978-3-540-70928-2
eBook Packages: Computer ScienceComputer Science (R0)
