Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Conference on Evolutionary Multi-Criterion Optimization

EMO 2007: Evolutionary Multi-Criterion Optimization pp 3Cite as

  1. Home
  2. Evolutionary Multi-Criterion Optimization
  3. Conference paper
Decision Making in Evolutionary Optimization (Abstract of Invited Talk)

Decision Making in Evolutionary Optimization (Abstract of Invited Talk)

  • Carlos M. Fonseca1 
  • Conference paper
  • 6803 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4403)

Abstract

Current evolutionary multiobjective optimization (EMO) approaches tend to emphasize the approximation of the Pareto-optimal front as a whole, thereby dissociating the optimization process from the selection of the final compromise solution by a decision maker. This has the advantage of removing subjective preference information from the optimization problem formulation, but it also makes the resulting problem computationally more demanding. In order to concentrate the search effort on the regions of potential interest to the decision maker, techniques for the progressive articulation of preferences in EMO have been proposed, casting EMO as the interaction between an evolutionary search mechanism and a decision maker. It is worth noting that even the promotion of diversity across the Pareto-optimal front, which is generally regarded as an optimizer design issue, may be successfully addressed by the decision maker within this framework, as it has been proposed recently by others. Regarding the evolutionary search mechanism, the main question at each iteration consists of determining the next candidate solution(s) to be evaluated, given the information acquired since the beginning of the run. This may be seen as another decision-making problem, but one with (very) incomplete attribute information, since objective values are generally not known for most potential alternatives. Alternatively, it may be seen as a control problem, where actions (new solutions) are to be selected based on the feedback provided by the decision maker. Either way, some model, however weak, of the underlying optimization problem must be assumed. In this talk, both the evaluation of current solutions and the generation of new candidate solutions in EMO will be discussed from a decision making perspective. From the discussion, opportunities for incorporating more explicit decision making in EMO will be identified.

Chapter PDF

Download to read the full chapter text

Author information

Authors and Affiliations

  1. Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

    Carlos M. Fonseca

Authors
  1. Carlos M. Fonseca
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Fonseca, C.M. (2007). Decision Making in Evolutionary Optimization (Abstract of Invited Talk). In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_3

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-70928-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature