Multiobjective Evolutionary Neural Networks for Time Series Forecasting

  • Swee Chiang Chiam
  • Kay Chen Tan
  • Abdullah Al Mamun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4403)


This paper will investigate the application of multiobjective evolu-tionary neural networks in time series forecasting. The proposed algorithmic model considers training and validation accuracy as the objectives to be optimized simultaneously, so as to balance the accuracy and generalization of the evolved neural networks. To improve the overall generalization ability for the set of solutions attained by the multiobjective evolutionary optimizer, a simple algorithm to filter possible outliers, which tend to deteriorate the overall performance, is proposed also. Performance comparison with other existing evolutionary neural networks in several time series problems demonstrates the practicality and viability of the proposed time series forecasting model.


Time Series Forecasting Multiobjective Evolutionary Neural Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  2. 2.
    Fieldsend, J., Singh, S.: Pareto Evolutionary Neural Networks. IEEE Transactions on Neural Networks 16(2), 338–354 (2005)CrossRefGoogle Scholar
  3. 3.
    Geman, S., Bienenstock, E., Doursat, R.: Neural Networks and the Bias/Variance Dilemma. Neural Computation 4, 1–58 (1992)CrossRefGoogle Scholar
  4. 4.
    Armstrong, J., Collopy, F.: Error measures for generalizing about forecasting methods-Empirical Comparisons. International Journal of Forecasting 8(1), 69–80 (1992)CrossRefGoogle Scholar
  5. 5.
    Makridakis, S.G., Wheelwright, S.C.: Forecasting methods and applications. Wiley, New York (1998)Google Scholar
  6. 6.
    Ash, T.: Dynamic node creation in backpropagation networks. Connection Science 1(4), 365–375 (1989)CrossRefGoogle Scholar
  7. 7.
    Lehtokangas, M.: Modeling with constructive backpropagation. Neural Networks 12, 707–716 (1999)CrossRefGoogle Scholar
  8. 8.
    Miller, G., Todd, P., Hegde, S.: Designing neural networks using genetic algorithms. In: Third International Conference on Genetic Algorithms, pp. 379–384 (2000)Google Scholar
  9. 9.
    Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  10. 10.
    Abraham, A., Grosan, C., Han, S.Y., Gelbukh, A.: Evolutionary Multiobjective Optimization Approach for Evolving Assemble of Intelligent Paradigms for Stock Market Modeling. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 673–681. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Abbass, H.A.: Pareto Neuro-Evolution: Constructing Ensemble of Neural Networks Using Multi-objective Optimization. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 2074–2080. IEEE, Los Alamitos (2003)Google Scholar
  12. 12.
    Abbass, H.A.: A Memetic Pareto Evolutionary Approach to Artificial Neural Networks. In: Australian Joint Conference on Artificial Intelligence, pp. 1–12 (2001)Google Scholar
  13. 13.
    Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25(3), 265–281 (2002)CrossRefGoogle Scholar
  14. 14.
    Teixeira, R.D.A., Braga, A.D.P., Takahashi, R.H.C., Saldanha, R.R.: A Multi-Objective Optimization Approach for Training Artificial Neural Networks. In: Brazilian Symposium on Neural Networks, pp. 168–172 (2000)Google Scholar
  15. 15.
    Oliveira, L.S., Morita, M., Sabourin, R.: Multi-Objective Genetic Algorithms to Create Ensemble of Classifiers. In: 3rd International Conference on Evolutionary Multi-Criterion Optimization, pp. 592–606 (2005)Google Scholar
  16. 16.
    Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling using multi-objective evolutionary algorithms. In: Congress on Evolutionary Computation , pp. 1–8 (2004)Google Scholar
  17. 17.
    Chandra, A., Yao, X.: DIVACE: Diverse and Accurate Ensemble Learning Algorithm. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 619–625. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorization. Journal of Information Fusion 6(1), 5–20 (2005)CrossRefGoogle Scholar
  19. 19.
    Prechelt, L.: Proben1-A Set of Neural Network Benchmarking Problems and Benchmarking Rules. Technical Report Nr. 21/ 94, Faculty of Computer Science, University of Karlsruhe, Germany (1994)Google Scholar
  20. 20.
    Radtke, P.V.W., Wong, T., Sabourin, R.: An evaluation of Over-Fit Control Strategies for Multi-Objective Evolutionary Optimization. In: IEEE Congress on Evolutionary Computation, pp. 6359–6366. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  21. 21.
    Tong, H.: Threshold models in non-linear time series analysis. Lecture notes in Statistics, vol. 21. Springer, Heidelberg (1983)zbMATHGoogle Scholar
  22. 22.
    Cortez, P., Rocha, M., Neves, J.: Evolving Time Series Forecasting Neural Network Models. In: International Symposium on Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Models (2001)Google Scholar
  23. 23.
    Cortez, P., Rocha, M., Neves, J.: A Meta-Genetic Algorithm for Time Series Forecasting. In: Workshop on Artificial Intelligence Techniques for Financial Time Series Analysis, 10th Portuguese Conference on Artificial Intelligence, pp. 21–31 (2001)Google Scholar
  24. 24.
    Hyndman, R.J.: Time Series Data Library., Accessed on 14.10.2006

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Swee Chiang Chiam
    • 1
  • Kay Chen Tan
    • 1
  • Abdullah Al Mamun
    • 1
  1. 1.Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576Singapore

Personalised recommendations