Advertisement

EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4403)

Abstract

This paper presents the Efficient Multi-Objective Particle Swarm Optimizer (EMOPSO), which is an improved version of a multi-objective evolutionary algorithm (MOEA) previously proposed by the authors. Throughout the paper, we provide several details of the design process that led us to EMOPSO. The main issues discussed are: the mechanism to maintain a set of well-distributed nondominated solutions, the turbulence operator that avoids premature convergence, the constraint-handling scheme, and the study of parameters that led us to propose a self-adaptation mechanism. The final algorithm is able to produce reasonably good approximations of the Pareto front of problems with up to 30 decision variables, while performing only 2,000 fitness function evaluations. As far as we know, this is the lowest number of evaluations reported so far for any multi-objective particle swarm optimizer. Our results are compared with respect to the NSGA-II in 12 test functions taken from the specialized literature.

Keywords

Pareto Front Evolutionary Computation Multiobjective Optimization Premature Convergence Adaptive Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)MathSciNetGoogle Scholar
  2. 2.
    Toscano Pulido, G.: On the Use of Self-Adaptation and Elitism for Multiobjective Particle Swarm Optimization. PhD thesis, Computer Science Section, Department of Electrical Engineering, CINVESTAV-IPN, Mexico (2005)Google Scholar
  3. 3.
    Branke, J., Mostaghim, S.: About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. LNCS, vol. 4193, pp. 523–532. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Toscano Pulido, G., Coello Coello, C.A.: Using Clustering Techniques to Improve the Performance of a Particle Swarm Optimizer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 225–237. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  7. 7.
    Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  8. 8.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multi-objective Optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  9. 9.
    Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)Google Scholar
  10. 10.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar
  11. 11.
    Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  12. 12.
    Deb, K.: Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation 7(3), 205–230 (1999)CrossRefGoogle Scholar
  13. 13.
    van den Bergh, F.: An Analysis of Particle Swarm Optimization. PhD thesis, Faculty of Natural and Agricultural Science, University of Petoria, Pretoria, South Africa (2002)Google Scholar
  14. 14.
    Toscano-Pulido, G., Coello Coello, C.A.: A Constraint-Handling Mechanism for Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, Piscataway, New Jersey, Portland, Oregon, USA, IEEE Service Center (2004) (1396)–1403Google Scholar
  15. 15.
    Fieldsend, J.E., Singh, S.: A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and Turbulence. In: Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK, pp. 37–44 (2002)Google Scholar
  16. 16.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  17. 17.
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  19. 19.
    Deb, K., Pratap, A., Meyarivan, T.: Constrained Test Problems for Multi-objective Evolutionary Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Universidad Autónoma de Nuevo León, AP 34 - F, Cd. Universitaria, San Nicolás de los Garza, NL 66450Mexico
  2. 2.CINVESTAV-IPN (Evolutionary Computation Group), Depto. de Computación, Av. IPN No 2508, Col. San Pedro Zacatenco, México, D.F., 07360Mexico

Personalised recommendations