Advertisement

A First Investigation of Sturmian Trees

  • Jean Berstel
  • Luc Boasson
  • Olivier Carton
  • Isabelle Fagnot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We consider Sturmian trees as a natural generalization of Sturmian words. A Sturmian tree is a tree having n + 1 distinct subtrees of height n for each n. As for the case of words, Sturmian trees are irrational trees of minimal complexity. We give various examples of Sturmian trees, and we characterize one family of Sturmian trees by means of a structural property of their automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpi, A., de Luca, A., Varricchio, S.: Special factors and uniqueness conditions in rational trees. Theory of Computing Systems 34, 375–395 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25, 95–165 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Mathematical Systems Theory 7, 138–153 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics, vol. 90. Cambridge University Press, Cambridge (2002)Google Scholar
  5. 5.
    Pytheas-Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics (Edited by Berthé, V., et al). Lecture Notes in Mathematics, vol. 1794. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  6. 6.
    Sakarovitch, J.: Élements de théorie des automates. Vuibert, Paris (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jean Berstel
    • 1
  • Luc Boasson
    • 2
  • Olivier Carton
    • 2
  • Isabelle Fagnot
    • 1
  1. 1.Institut Gaspard-Monge (IGM), Université de Marne-la-Vallée and CNRS, Marne-la-Vallée 
  2. 2.Laboratoire d’informatique algorithmique: fondements et applications (LIAFA), Université Denis-Diderot (Paris VII) and CNRS, Paris 

Personalised recommendations