Advertisement

VPSPACE and a Transfer Theorem over the Reals

  • Pascal Koiran
  • Sylvain Perifel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We introduce a new class VPSPACE of families of polynomials. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main theorem is that if (uniform, constant-free) VPSPACE families can be evaluated efficiently then the class \({\sf PAR}_{\mathbb{R}}\) of decision problems that can be solved in parallel polynomial time over the real numbers collapses to P . As a result, one must first be able to show that there are \({\sf VPSPACE}\) families which are hard to evaluate in order to separate \(\sf{P}_{\mathbb{R}}\) from \(\sf{NP}_{\mathbb{R}}\), or even from \(\sf{PAR}_{\mathbb{R}}\).

Keywords

computational complexity algebraic complexity  Blum-Shub-Smale model Valiant’s model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, L., et al.: Complexity and Real Computation. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21(1), 1–46 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  4. 4.
    Chapuis, O., Koiran, P.: Saturation and stability in the theory of computation over the reals. Annals of Pure and Applied Logic 99, 1–49 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Charbit, P., et al.: Finding a vector orthogonal to roughly half a collection of vectors. Accepted for publication in Journal of Complexity (2006), Available from http://perso.ens-lyon.fr/pascal.koiran/publications.html
  6. 6.
    Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Cucker, F., Grigoriev, D.: On the power of real Turing machines over binary inputs. SIAM Journal on Computing 26(1), 243–254 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Grigoriev, D.: Complexity of deciding Tarski algebra. Journal of Symbolic Computation 5, 65–108 (1988)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Grigoriev, D.: Topological complexity of the range searching. Journal of Complexity 16, 50–53 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Koiran, P.: Valiant’s model and the cost of computing integers. Computational Complexity 13, 131–146 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Koiran, P., Perifel, S.: Valiant’s model: from exponential sums to exponential products. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 596–607. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Koiran, P., Perifel, S.: VPSPACE and a Transfer Theorem over the Reals (2006), Available from http://prunel.ccsd.cnrs.fr/ensl-00103018
  13. 13.
    Malod, G.: Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon 1 (July 2003)Google Scholar
  14. 14.
    Milnor, J.: On Betti numbers of real varieties. Proceedings of the American Mathematical Society 15(2), 275–280 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  16. 16.
    Poizat, B.: Les petits cailloux. Aléas, Lyon (1995)zbMATHGoogle Scholar
  17. 17.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals, part 1. Journal of Symbolic Computation 13, 255–299 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium on Theory of Computing, pp. 249–261. ACM Press, New York (1979)Google Scholar
  19. 19.
    Valiant, L.G., et al.: Fast parallel computation of polynomials using few processors. SIAM Journal on Computing 12(4), 641–644 (1983)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Pascal Koiran
    • 1
  • Sylvain Perifel
    • 1
  1. 1.LIP, École Normale Supérieure de Lyon 

Personalised recommendations