Skip to main content

An Optimal, Edges-Only Fully Dynamic Algorithm for Distance-Hereditary Graphs

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

The problem of dynamically recognizing a class of graphs has received much attention recently. Given an input graph and a sequence of operations (vertex and edge additions and deletions) to be performed on that graph, the algorithm must determine after each operation if the resulting graph is still a member of the class in question. This paper presents the first dynamic recognition algorithm for distance-hereditary graphs. The algorithm handles edge additions and deletions, and is optimal in that each operation can be performed in constant time. In doing so, the paper completely characterizes when an edge can be added to and removed from a distance-hereditary graph with the result remaining distance-hereditary, and develops a new representation for these graphs in terms of cographs.

This research was partially funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Ontario Graduate Scholarship (OGS) program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crespelle, C., Paul, C.: Fully dynamic algorithm and certificate for directed cographs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 93–104. Springer, Heidelberg (2004)

    Google Scholar 

  2. Crespelle, C., Paul, C.: Fully dynamic algorithm for modular decomposition and recognition of permutation graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 38–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. Siam J. Comput. 14, 926–934 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25, 390–403 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hsu, W.L.: On-line recognition of interval graphs in O(m + nlog n) time. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 27–38. Springer, Heidelberg (1996)

    Google Scholar 

  6. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31, 289–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ibarra, L.: A fully dynamic algorithm for recognizing interval graphs using the clique-separator graph. Technical report, University of Victoria (2001)

    Google Scholar 

  8. Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pp. 923–924. SIAM, Philadelphia (1999)

    Google Scholar 

  9. Jamison, B., Olariu, S.: Recognizing P 4-sparse graphs in linear time. Siam J. Comput 21, 381–406 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nikolopoulos, S.D., Palios, L., Papadopoulos, C.: A fully dynamic algorithm for the recognition of P 4-sparse graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Applied Mathematics 136, 329–340 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  13. Brandstadt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM, Philadelphia (1999)

    Google Scholar 

  14. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical modular decomposition. In: SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, pp. 26–35. SIAM, Philadelphia (1997)

    Google Scholar 

  15. Bandelt, H., Mulder, H.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41, 182–208 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hammer, P.L., Maffray, F.: Completely separable graphs. Discrete Appl. Math. 27, 85–99 (1990)

    Article  MathSciNet  Google Scholar 

  17. D’Atri, A., Moscarini, M.: Distance-hereditary graphs, steiner trees, and connected domination. SIAM J. Comput. 17, 521–538 (1988)

    Article  MathSciNet  Google Scholar 

  18. Tedder, M.: An optimal algorithm recognizing distance-hereditary graphs under a sequence of edge deletions. Master’s thesis, University of Toronto (2006)

    Google Scholar 

  19. Tedder, M.: An optimal, edges-only fully-dynamic algorithm recognizing distance-hereditary graphs. In preparation (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tedder, M., Corneil, D. (2007). An Optimal, Edges-Only Fully Dynamic Algorithm for Distance-Hereditary Graphs. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics