Advertisement

The Complexity of Unions of Disjoint Sets

  • Christian Glaßer
  • Alan L. Selman
  • Stephen Travers
  • Klaus W. Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

This paper is motivated by the open question whether the union of two disjoint NP-complete sets always is NP-complete. We discover that such unions retain much of the complexity of their single components. More precisely, they are complete with respect to more general reducibilities.

Moreover, we approach the main question in a more general way: We analyze the scope of the complexity of unions of m-equivalent disjoint sets. Under the hypothesis that NE ≠ coNE, we construct degrees in NP where our main question has a positive answer, i.e., these degrees are closed under unions of disjoint sets.

Keywords

Chromatic Number SIAM Journal Polynomial Hierarchy Mathematical System Theory Polynomial Time Reducibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Agr02]
    Agrawal, M.: Pseudo-random generators and structure of complete degrees. In: IEEE Conference on Computational Complexity, pp. 139–147. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  2. [AS84]
    Ambos-Spies, K.: P-mitotic sets. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 1–23. Springer, Heidelberg (1984)Google Scholar
  3. [BG82]
    Blass, A., Gurevich, Y.: On the unique satisfiability problem. Information and Control 82, 80–88 (1982)CrossRefMathSciNetGoogle Scholar
  4. [BH77]
    Berman, L., Hartmanis, J.: On isomorphism and density of NP and other complete sets. SIAM Journal on Computing 6, 305–322 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  5. [BHT98]
    Buhrman, H., Hoene, A., Torenvliet, L.: Splittings, robustness, and structure of complete sets. SIAM Journal on Computing 27, 637–653 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  6. [BV97]
    Boneh, D., Venkatesan, R.: Rounding in lattices and its cryptographic applications. In: SODA, pp. 675–681 (1997)Google Scholar
  7. [BWSD77]
    Book, R.V., et al.: Inclusion complete tally languages and the hartmanis-berman conjecture. Mathematical Systems Theory 11, 1–8 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  8. [CGH+88]
    Cai, J.-Y., et al.: The boolean hierarchy I: Structural properties. SIAM Journal on Computing 17, 1232–1252 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  9. [DF03]
    Downey, R.G., Fortnow, L.: Uniformly hard languages. Theoretical Computer Science 298(2), 303–315 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  10. [FR02]
    Fortnow, L., Rogers, J.: Separability and one-way functions. Computational Complexity 11(3-4), 137–157 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. [GPSZ05]
    Glaßer, C., et al.: Redundancy in complete sets. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 444–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. [GS88]
    Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  13. [GT06]
    Glaßer, C., Travers, S.: Machines that can output empty words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 436–446. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. [GW86]
    Gundermann, T., Wechsung, G.: Nondeterministic Turing machines with modified acceptance. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 396–404. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  15. [HP06]
    Hitchcock, J., Pavan, A.: Comparing reductions to NP-complete sets. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 465–476. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. [KS97]
    Köbler, J., Schöning, U.: High sets for NP. In: Advances in Algorithms, Languages, and Complexity, pp. 139–156 (1997)Google Scholar
  17. [KSW87]
    Köbler, J., Schöning, U., Wagner, K.W.: The difference and the truth-table hierarchies for NP. RAIRO Inform. Théor. 21, 419–435 (1987)zbMATHGoogle Scholar
  18. [LLS75]
    Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time reducibilities. Theoretical Computer Science 1, 103–123 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  19. [Lon78]
    Long, T.J.: On some Polynomial Time Reducibilities. PhD thesis, Purdue University, Lafayette, Ind. (1978)Google Scholar
  20. [Sch83]
    Schöning, U.: A low and a high hierarchy within NP. Journal of Computer and System Sciences 27(1), 14–28 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  21. [Sel79]
    Selman, A.L.: P-selective sets, tally languages, and the behavior of polynomial-time reducibilities on NP. Mathematical Systems Theory 13, 55–65 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  22. [Sel88]
    Selman, A.L.: Natural self-reducible sets. SIAM Journal on Computing 17(5), 989–996 (1988)CrossRefMathSciNetGoogle Scholar
  23. [Val76]
    Valiant, L.G.: Relative complexity of checking and evaluation. Information Processing Letters 5, 20–23 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  24. [WW85]
    Wagner, K.W., Wechsung, G.: On the boolean closure of NP. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 485–493. Springer, Heidelberg (1985)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Glaßer
    • 1
  • Alan L. Selman
    • 2
  • Stephen Travers
    • 1
  • Klaus W. Wagner
    • 1
  1. 1.Universität WürzburgGermany
  2. 2.University at BuffaloUSA

Personalised recommendations