Computing Representations of Matroids of Bounded Branch-Width

  • Daniel Král’
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)


For every k ≥ 1 and two finite fields \({\mathbb F}\) and \({\mathbb F}'\), we design a polynomial-time algorithm that given a matroid \({\mathcal M}\) of branch-width at most k represented over \({\mathbb F}\) decides whether \({\mathcal M}\) is representable over \({\mathbb F}'\) and if so, it computes a representation of \({\mathcal M}\) over \({\mathbb F}'\). The algorithm also counts the number of non-isomorphic representations of \({\mathcal M}\) over \({\mathbb F}'\). Moreover, it can be modified to list all such non-isomorphic representations.


Linear Subspace Graph Transformation Computing Representation Tutte Polynomial Isomorphic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree decomposable graphs. J. Algorithms 12, 308–340 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bagan, G.: MSO queries on tree decomposable structures are computable with linear delay. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.: Dynamic programming algorithms on graphs with bounded tree-width. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–119. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Courcelle, B.: The monadic second-order logic of graph I. Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of graph grammars and computing by graph transformations, vol. 1: Foundations, pp. 313–400. World Scientific, Singapore (1997)Google Scholar
  6. 6.
    Geelen, J., Gerards, B., Whittle, G.: Tangles, tree decomposition and grids in matroids. PreprintGoogle Scholar
  7. 7.
    Geelen, J., Gerards, B., Whittle, G.: On Rota’s Conjecture and excluded minors containing large projective geometries. J. Combin. Theory Ser. B 96(3), 405–425 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Geelen, J., Gerards, B., Whittle, G.: Excluding a planar graph from GF(q)-representable matroids. ManuscriptGoogle Scholar
  9. 9.
    Geelen, J., Gerards, B., Whittle, G.: Inequivalent representations of matroids I: An overview. In preparationGoogle Scholar
  10. 10.
    Geelen, J., Gerards, B., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs. J. Combin. Theory Ser. B 84, 270–290 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Hliněný, P.: On matroid properties definable in the MSO logic. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 470–479. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Hliněný, P.: A parametrized algorithm for matroid branch-width. SIAM J. Computing 35(2), 259–277 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hliněný, P.: Branch-width, parse trees and monadic second-order logic for matroids. J. Combin. Theory Ser. B 96, 325–351 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hliněný, P.: On matroid representatibility and minor problems. In: Mohr, B., et al. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 505–516. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Hliněný, P., Whittle, G.: Matroid tree-width. To appear in European Journal on CombinatoricsGoogle Scholar
  16. 16.
    Oum, S., Seymour, P.: Certifying large branch-width. In: Proc. of SODA, pp. 810–813. SIAM, Philadelphia (2006)CrossRefGoogle Scholar
  17. 17.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. To appear in J. Combin. Theory, Ser. BGoogle Scholar
  18. 18.
    Oum, S., Seymour, P.: Testing branch-width. To appear in J. Combin. Theory, Ser. BGoogle Scholar
  19. 19.
    Oxley, J.G.: Matroid theory. Oxford University Press, Oxford (1992)zbMATHGoogle Scholar
  20. 20.
    Rota, G.-C.: Combinatorial theory, old and new. In: Actes du Congrès International de Mathématiciens, vol. 3, pp. 229–233. Gauthier-Villars, Paris (1970)Google Scholar
  21. 21.
    Seymour, P.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305–359 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Seymour, P.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Truemper, K.: Matroid decomposition. Academic Press, London (1992)zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Král’
    • 1
  1. 1.Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 PragueCzech Republic

Personalised recommendations