Advertisement

Admissibility in Infinite Games

  • Dietmar Berwanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We analyse the notion of iterated admissibility, i.e., avoidance of weakly dominated strategies, as a solution concept for extensive games of infinite horizon. This concept is known to provide a valuable criterion for selecting among multiple equilibria and to yield sharp predictions in finite games. However, generalisations to the infinite are inherently problematic, due to unbounded dominance chains and the requirement of transfinite induction.

In a multi-player non-zero-sum setting, we show that for infinite extensive games of perfect information with only two possible payoffs (win or lose), the concept of iterated admissibility is sound and robust: all iteration stages are dominated by admissible strategies, the iteration is non-stagnating, and, under regular winning conditions, strategies that survive iterated elimination of dominated strategies form a regular set.

Keywords

Nash Equilibrium Solution Concept Game Tree Sequential Game Admissible Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R.: Order independence and rationalizability. In: TARK ’05: Proc. Theoretical aspects of rationality and knowledge, pp. 22–38 (2005)Google Scholar
  2. 2.
    Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial observation. Theoretical Comp. Science 303(1), 7–34 (2003), http://www.labri.fr/publications/l3a/2003/AVW03 CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in games. To appearGoogle Scholar
  4. 4.
    Chatterjee, K.: Two-player nonzero-sum omega-regular games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 413–427. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. In: Proc. LICS 2004, Logic in Computer Science, pp. 160–169 (2004)Google Scholar
  6. 6.
    Chatterjee, K., Majumdar, R., Jurdzinski, M.: On Nash equilibria in stochastic games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Gale, D.: A theory of n-person games with perfect information. Proceedings of the National Academy of Sciences 39, 495–501 (1953)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gimbert, H.: Jeux Positionels. PhD thesis, Université Paris 7 (2006)Google Scholar
  9. 9.
    Gretlein, R.J.: Dominance elimination procedures on finite alternative games. International Journal of Game Theory 12, 107–113 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Gurevich, Y., Harrington, L.: Trees, automata and games. In: Proc. of the 14th Annual ACM Symposium on Theory of Computing, STOC ’82, pp. 60–65. ACM Press, New York (1982)Google Scholar
  11. 11.
    Henzinger, T.A.: Games in system design and verification. In: Proc. Theoretical Aspects of Rationality and Knowledge (TARK-2005) (2005)Google Scholar
  12. 12.
    Hillas, J., Kohlberg, E.: Foundations of strategic equilibrium. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 3, pp. 1597–1663. Elsevier, Amsterdam (2002)Google Scholar
  13. 13.
    Kohlberg, E., Mertens, J.-F.: On the strategic stability of equilibria. Econometrica 54(5), 1003–1037 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Luce, D.R., Raiffa, H.: Games and Decisions. Wiley, Chichester (1957)zbMATHGoogle Scholar
  15. 15.
    Mailath, G.J.: Do people play Nash equilibrium? Lessons from evolutionary game theory. Journal of Economic Literature 36(3), 1347–1374 (1998)Google Scholar
  16. 16.
    Marx, L.M., Swinkels, J.M.: Order independence for iterated weak dominance. Games and Economic Behavior 31(2), 324–329 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Østerdal, L.P.: Iterated weak dominance and subgame dominance. Journal of Mathematical Economics 41, 637–645 (2005)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Papadimitriou, C.: Algorithms, games, and the internet. In: STOC ’01: Proc. ACM symposium on Theory of computing, pp. 749–753. ACM Press, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. Master’s thesis, RWTH Aachen University (2005)Google Scholar
  22. 22.
    Walukiewicz, I.: A landscape with games in the background. In: Proc. Logic in Computer Science (LICS 2004), pp. 356–366 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Dietmar Berwanger
    • 1
  1. 1.RWTH Aachen, Mathematical Foundations of Computer Science, 52056 AachenGermany

Personalised recommendations