Advertisement

Simultaneous Graph Embedding with Bends and Circular Arcs

  • Justin Cappos
  • Alejandro Estrella-Balderrama
  • J. Joseph Fowler
  • Stephen G. Kobourov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

We consider the problem of simultaneous embedding of planar graphs. We demonstrate how to simultaneously embed a path and an n-level planar graph and how to use radial embeddings for curvilinear simultaneous embeddings of a path and an outerplanar graph. We also show how to use star-shaped levels to find 2-bends per path edge simultaneous embeddings of a path and an outerplanar graph. All embedding algorithms run in O(n) time.

Keywords

Planar Graph Concentric Circle Level Planar Outerplanar Graph Plane Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bose, P.: On embedding an outer-planar graph in a point set. CGTA: Computational Geometry: Theory and Applications 23(3), 303–312 (2002)zbMATHGoogle Scholar
  3. 3.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. In: 8th Workshop on Algorithms and Data Structures, pp. 243–255 (2003)Google Scholar
  4. 4.
    Cappos, J., Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Simultaneous graph embedding with bends and circular arcs. Technical Report TR06-02, University of Arizona (2006)Google Scholar
  5. 5.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Systems Man Cybernet. 18(6), 1035–1046 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Eades, P., Feng, Q.-W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 195–205. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Manuscript accepted by 14th Symposium on Graph Drawing (2006)Google Scholar
  9. 9.
    Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer grids in two and three dimensions. Journal of Graph Algorithms and Applications 7(4), 363–398 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Geyer, M., Kaufmann, M., Vrto, I.: Two trees which are self-intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. J. Graph Algorithms Appl. 6(1), 67–113 (2002)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Justin Cappos
    • 1
  • Alejandro Estrella-Balderrama
    • 1
  • J. Joseph Fowler
    • 1
  • Stephen G. Kobourov
    • 1
  1. 1.Department of Computer Science, University of Arizona 

Personalised recommendations