Skip to main content

A Parameterized Algorithm for Exploring Concept Lattices

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4390)

Abstract

Formal Concept Analysis (FCA) is a natural framework for learning from positive and negative examples. Indeed, learning from examples results in sets of frequent concepts whose extent contains only these examples. In terms of association rules, the above learning strategy can be seen as searching the premises of exact rules where the consequence is fixed. In its most classical setting, FCA considers attributes as a non-ordered set. When attributes of the context are ordered, Conceptual Scaling allows the related taxonomy to be taken into account by producing a context completed with all attributes deduced from the taxonomy. The drawback, however, is that concept intents contain redundant information. In this article, we propose a parameterized generalization of a previously proposed algorithm, in order to learn rules in the presence of a taxonomy. The taxonomy is taken into account during the computation so as to remove all redundancies from intents. Simply changing one component, this parameterized algorithm can compute various kinds of concept-based rules. We present instantiations of the parameterized algorithm for learning positive and negative rules.

Keywords

  • Association Rule
  • Parameterized Algorithm
  • Concept Lattice
  • Function Filter
  • Formal Context

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in massive databases. In: Proc. of the ACM-SIGMOD 1993 Int. Conf. on Management of Data, May 1993, pp. 207–216. ACM Press, New York (1993)

    CrossRef  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499 (1994)

    Google Scholar 

  3. Brin, S., et al.: Dynamic itemset counting and implication rules for market basket data. In: Peckham, J. (ed.) Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 255–264. ACM Press, New York (1997)

    CrossRef  Google Scholar 

  4. Bordat, J.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques, Informatiques et Sciences Humaines 24(94), 31–47 (1986)

    MathSciNet  Google Scholar 

  5. Cellier, P., et al.: An algorithm to find frequent concepts of a formal context with taxonomy. In: Concept Lattices and Their Applications (2006)

    Google Scholar 

  6. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management 40(3), 383–419 (2004)

    CrossRef  MATH  Google Scholar 

  7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  8. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)

    Google Scholar 

  9. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  10. Pasquier, N.: Data Mining: Algorithmes d’extraction et de réduction des régles d’association dans les bases de données. Computer science, Université Blaise Pascal - Clermont-Ferrand II (January 2000)

    Google Scholar 

  11. Pasquier, N., et al.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  12. Padioleau, Y., Ridoux, O.: A logic file system. In: Proc. USENIX Annual Technical Conference (2003)

    Google Scholar 

  13. Sigonneau, B., Ridoux, O.: Indexation multiple et automatisée de composants logiciels. In: Technique et Science Informatiques (2006)

    Google Scholar 

  14. Zaki, M.J.: Mining non-redundant association rules. Data Mining Knowl. Discov. 9(3), 223–248 (2004)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei O. Kuznetsov Stefan Schmidt

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Cellier, P., Ferré, S., Ridoux, O., Ducassé, M. (2007). A Parameterized Algorithm for Exploring Concept Lattices. In: Kuznetsov, S.O., Schmidt, S. (eds) Formal Concept Analysis. ICFCA 2007. Lecture Notes in Computer Science(), vol 4390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70901-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70901-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70828-5

  • Online ISBN: 978-3-540-70901-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics