Skip to main content

The Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4390)

Abstract

This paper offers a mathematical analysis of labelled line diagrams of finite concept lattices to gain a better understanding of those diagrams. The main result is the Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices. This Theorem can be applied to justify, for instance, the training tool “ CAPESSIMUS - A Game of Conceiving Concepts ” which has been created to support the understanding and the drawing of appropriate line diagrams of finite concept lattices.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  2. Burmeister, P.: ConImp - Ein Programm zur Formalen Begriffsanalyse. In: Stumme, G., Wille, R. (eds.) Begriffliche Wissensverarbeitung: Methoden und Anwendungen, pp. 25–56. Springer, Heidelberg (2000)

    Google Scholar 

  3. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  4. Gehring, P., Wille, R.: Semantology: basic methods for knowledge representations. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 215–228. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Helmerich, M., Wille, R.: CAPESSIMUS - Ein Denkspiel zum Begreifen von Begriffen (in preparation)

    Google Scholar 

  6. Peirce, C.S.: Reasoning and the logic of things (Edited by Ketner, K.L.; with an introduction by Ketner, K.L. and Putnam, H.). Havard University Press, Cambridge (1992)

    Google Scholar 

  7. Wille, R.: Mathematik präsentieren, reflektieren, beurteilen. In: Lengnink, K., Siebel, F. (eds.) Mathematik präsentieren, reflektieren, beurteilen, pp. 3–19. Verlag Allgemeine Wissenschaft, Mühltal (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei O. Kuznetsov Stefan Schmidt

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wille, R. (2007). The Basic Theorem on Labelled Line Diagrams of Finite Concept Lattices. In: Kuznetsov, S.O., Schmidt, S. (eds) Formal Concept Analysis. ICFCA 2007. Lecture Notes in Computer Science(), vol 4390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70901-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70901-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70828-5

  • Online ISBN: 978-3-540-70901-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics