Skip to main content

Polynomial Embeddings and Representations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4390)

Abstract

The following paper activates polynomial methods for data analysis.We want to embed a given formal context into a polynomial context \((K^n,K[x_1, . . . , x_n], \bot\)) in such a way that implications can be computed in the polynomial context, using the algebraic structure. The basic ideas of formal concept analysis that are needed here are sketched in [TB1].

Keywords

  • Algebraic Variety
  • Total Degree
  • Concept Lattice
  • Polynomial Solution
  • Formal Context

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganter, B., Wille, R.: Formale Begriffsanalyse Mathematische Grundlagen. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  2. Kunz, E.: Einführung in die kommutative Algebra und Algebraische Geometrie. Vieweg, Braunschweig (1980)

    MATH  Google Scholar 

  3. Krantz, D.H., et al.: Foundations of Measurement. Academic Press, London (1971)

    MATH  Google Scholar 

  4. Becker, T.: Features of Interaction between Formal Concept Analysis and Algebraic Geometry. TU Darmstadt

    Google Scholar 

  5. Becker, T.: General Algebraic Geometry, TU Darmstadt

    Google Scholar 

  6. Vogt, F.: Bialgebraic Contexts. Shaker, Aachen (1994)

    Google Scholar 

  7. Wille, U.: Geometric Representation of Ordinal Contexts. Dissertation, Giessen (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei O. Kuznetsov Stefan Schmidt

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Becker, T. (2007). Polynomial Embeddings and Representations. In: Kuznetsov, S.O., Schmidt, S. (eds) Formal Concept Analysis. ICFCA 2007. Lecture Notes in Computer Science(), vol 4390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70901-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70901-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70828-5

  • Online ISBN: 978-3-540-70901-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics