Abstract
This paper considers the problem of recognition and representation of dynamically changing chordal graphs. The input to the problem consists of a series of modifications to be performed on a graph, where modifications can be additions or deletions of complete r-vertex graphs. The purpose is to maintain a representation of the graph as long as it remains a chordal graph and to detect when it ceases to be so.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. IMA, vol. 56, pp. 1–29. Springer, Heidelberg (1993)
Beeri, C., et al.: On the desirability of acyclic database schemes. Journal of the ACM 30, 479–513 (1983)
Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)
Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pp. 923–924. SIAM, Philadelphia (1999)
Berry, A., Sigayret, A., Spinrad, J.: Faster dynamic algorithms for chordal graphs, and an application to Phylogeny. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 445–455. Springer, Heidelberg (2005)
Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 527–539. Springer, Heidelberg (1999)
Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for dynamically maintaining chordal graphs. Discrete Mathematics 3063, 318–336 (2006)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combinatorial Theory B 16, 47–56 (1974)
Walter, J.R.: Representations of chordal graphs of a tree. J. Graph Theory 2, 265–267 (1978)
Ho, C., Lee, R.C.T.: Counting clique trees and computing perfect elimination schemes in parallel. Information Processing Letters 31, 61–68 (1989)
Lundquist, M.: Zero patterns, chordal graphs, and matrix completions. PhD thesis, Dept.of Mathematical Sciences, Clemson University (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yrysgul, T.k. (2007). A Fully Dynamic Algorithm for Recognizing and Representing Chordal Graphs. In: Virbitskaite, I., Voronkov, A. (eds) Perspectives of Systems Informatics. PSI 2006. Lecture Notes in Computer Science, vol 4378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70881-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-70881-0_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70880-3
Online ISBN: 978-3-540-70881-0
eBook Packages: Computer ScienceComputer Science (R0)