Advertisement

Language Decompositions, Primality, and Trajectory-Based Operations

  • Kai Salomaa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5148)

Abstract

We consider the decomposability of languages and the notion of primality with respect to catenation, as well as, more general operations. We survey recent results and discuss open problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmo, M., Restivo, A.: On languages factorizing the free monoid. Internat. J. Algebra and Computation 6, 413–427 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle decompositions of regular languages. Internat. J. Foundations of Computer Science 13, 799–816 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)zbMATHGoogle Scholar
  4. 4.
    Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-time prime decomposition of regular prefix codes. Internat. J. Foundations of Computer Science 14, 1019–1031 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Daley, M., Domaratzki, M., Salomaa, K.: On the operational orthogonality of languages. In: Kunc, M., Okhotin, A. (eds.) Proc. of Theory and Applications of Language Equations, Turku, Finland, pp. 43–53 (2007)Google Scholar
  6. 6.
    Domaratzki, M.: Semantic shuffle and deletion along trajectories. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 163–174. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Domaratzki, M.: Deletion along trajectories. Theoret. Comput. Sci. 320, 293–313 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Domaratzki, M., Rozenberg, G., Salomaa, K.: Interpreted trajectories. Fundamenta Informaticae 73, 182–193 (2006)MathSciNetGoogle Scholar
  9. 9.
    Domaratzki, M., Salomaa, K.: Decidability of trajectory-based equations. Theoret. Comput. Sci. 345, 304–330 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Domaratzki, M., Salomaa, K.: Restricted sets of trajectories and decidability of shuffle decompositions. Internat. J. Foundations of Computer Science 16, 897–912 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Han, Y.-S., Salomaa, A., Salomaa, K., Wood, D., Yu, S.: On the existence of prime decompositions. Theoret. Comput. Sci. 376, 60–69 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hinz, F., Dassow, J.: An undecidability result for regular languages and its application to regulated rewriting. Bulletin of the EATCS 38, 168–174 (1989)zbMATHGoogle Scholar
  13. 13.
    Ito, M.: Shuffle decomposition of regular languages. J. Universal Comput. Sci. 8, 257–259 (2002)Google Scholar
  14. 14.
    Kari, L., Sosík, P.: Aspects of shuffle and deletion on trajectories. Theoret. Comput. Sci. 332, 47–61 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: Syntactic constraints. Theoret. Comput. Sci. 197, 1–56 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mateescu, A., Salomaa, A., Yu, S.: Factorizations of languages and commutativity conditions. Acta Cybernetica 15, 339–351 (2002)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Pǎun, G., Salomaa, A.: Thin and slender languages. Discr. Applied Math. 61, 257–270 (1995)CrossRefGoogle Scholar
  18. 18.
    Rampersad, N., Ravikumar, B., Santean, N., Shallit, J.: A study on unique rational operations. Tech. report TR-20071222-1, Dept. of Computer and Information Sciences, Indiana University South Bend (2007)Google Scholar
  19. 19.
    Rampersad, N., Shallit, J.: Private communication (2006)Google Scholar
  20. 20.
    Salomaa, A., Salomaa, K., Yu, S.: Length codes, products of languages and primality. In: Fazekas, S., Martin-Vide, C., Tîrnăucă, C. (eds.) Proc. of the 2nd International Conference on Language and Automata Theory and Applications, LATA 2008, pp. 487–498 (2008)Google Scholar
  21. 21.
    Salomaa, A., Yu, S.: On the decomposition of finite languages. In: Proc. Developments in Language Theory, DLT 1999, pp. 22–31. World Scientific Publ. Co., Singapore (2000)Google Scholar
  22. 22.
    Weber, A., Head, T.: The finest homophonic partition and related code concepts. IEEE Trans. Inform. Theory IT-42, 1569–1575 (1996)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kai Salomaa
    • 1
  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations