Skip to main content

Ribosomal Dynamics: Intrinsic Instability of a Molecular Machine

  • Chapter

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

Ribosomes are molecular machines that translate genetic message into nascent peptides, through a complex dynamics interplay with mRNAs, tRNAs, and various protein factors. A prominent example of ribosomal dynamics is the rotation of small ribosomal subunit with respect to a large subunit, characterized as the “ratchet motion,” which is triggered by the binding of several translation factors. Here, we analyze two kinds of ribosomal ratchet motions, induced by the binding of EF-G and RF3, respectively, as previously observed by cryo-electron microscopy. Using the flexible fitting technique (real-space refinement) and an RNA secondary structure display tool (coloRNA), we obtained quasi-atomic models of the ribosome in these ratchet-motion-related functional states and mapped the observed differences onto the highly conserved RNA secondary structure. Comparisons between two sets of ratchet motions revealed that, while the overall patterns of the RNA displacement are very similar, several local regions stand out in their differential behavior, including the highly conserved GAC (GTPase-associated-center) region. We postulate that these regions are important in modulating general ratchet motion and bestowing it with the dynamic characteristics required for the specific function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal RK, Heagle AB, Penczek P, Grassucci RA, Frank J (1999) EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat Struct Biol 6:643–647

    Article  Google Scholar 

  • Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J (2005) The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–712

    Article  Google Scholar 

  • Baker TS, Johnson JE (1996) Low resolution meets high: towards a resolution continuum from cells to atoms. Curr Opin Struct Biol 6:585–594

    Article  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  ADS  Google Scholar 

  • Barat C, Datta PP, Raj VS, Sharma MR, Kaji H, Kaji A, Agrawal RK (2007) Progression of the ribosome recycling factor through the ribosome dissociates the two ribosomal subunits. Mol Cell 27:250–261

    Article  Google Scholar 

  • Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD (2004) tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11:1008–1014

    Article  Google Scholar 

  • Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A, Cate JH (2007) Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 14:727–732

    Article  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Nilges N, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system (CNS): a new software system for macromolecular structure determination. Acta Cryst D 54:905–921

    Article  Google Scholar 

  • Chapman MS (1995) Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function. Acta Cryst A 51:69–80

    Article  Google Scholar 

  • Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF (2007) Observation of intersubunit movement of the ribosome in solution using FRET. J Mol Biol 370:530–540

    Article  Google Scholar 

  • Fabiola F, Chapman MS (2005) Fitting of high-resolution structures into electron microscopy reconstruction images. Structure 13:389–400

    Article  Google Scholar 

  • Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies. Oxford University Press, New York

    Book  Google Scholar 

  • Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322

    Article  ADS  Google Scholar 

  • Frank J, Gao H, Sengupta J, Gao N, Taylor DJ (2007) The process of mRNA-tRNA translocation. Proc Natl Acad Sci USA 104:19671–19678

    Article  ADS  Google Scholar 

  • Fu J, Gao H, Frank J (2007) Unsupervised classification of single particles by cluster tracking in multi-dimensional space. J Struct Biol 157:226–239

    Article  Google Scholar 

  • Gao H, Frank J (2005) Molding atomic structures into intermediate-resolution cryo-EM density maps of ribosomal complexes using real-space refinement. Structure 13:401–406

    Article  Google Scholar 

  • Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J (2003) Study of the structural dynamics of the E. coli 70S ribosome using real space refinement. Cell 113:789–801

    Article  Google Scholar 

  • Gao H, Valle M, Ehrenberg M, Frank J (2004) Dynamics of EF-G interaction with the ribosome explored by classification of a heterogeneous cryo-EM dataset. J Struct Biol 147:283–290

    Article  Google Scholar 

  • Gao N, Zavialov AV, Li W, Sengupta J, Valle M, Gursky RP, Ehrenberg M, Frank J (2005) Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol Cell 18:663–674

    Article  Google Scholar 

  • Gao H, Zhou Z, Rawat U, Huang C, Bouakaz L, Wang C, Cheng Z, Liu Y, Zavialov A, Gursky R, Sanyal S, Ehrenberg M, Frank J, Song H (2007) RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129:929–941

    Article  Google Scholar 

  • Grassucci RA, Taylor DJ, Frank J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protocols 2:3239–3246

    Article  Google Scholar 

  • Grassucci RA, Taylor D, Frank J (2008) Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Nat Protocols 3:330–339

    Article  Google Scholar 

  • Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R (2006) Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444:507–511

    Article  ADS  Google Scholar 

  • Harms J, Schlunzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–688

    Article  Google Scholar 

  • Klaholz BP, Myasnikov AG, van Heel M (2004) Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427:862–865

    Article  ADS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077

    Article  Google Scholar 

  • LeBarron J, Mitra K, Frank J (2007) Displaying 3D data on RNA secondary structures: coloRNA. J Struct Biol 157:262–270

    Article  Google Scholar 

  • Munro JB, Altman RB, O'Connor N, Blanchard SC (2007) Identification of two distinct hybrid state intermediates on the ribosome. Mol Cell 25:505–517

    Article  Google Scholar 

  • Petry S, Brodersen DE, Murphy FV, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123:1255–1266

    Article  Google Scholar 

  • Rawat UBS, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J (2003) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421:87–90

    Article  ADS  Google Scholar 

  • Rawat U, Gao H, Zavialov AV, Gursky R, Ehrenberg M, Frank J (2006) Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 357:1144–1153

    Article  Google Scholar 

  • Rossmann MG (2000) Fitting atomic models into electron-microscopy maps. Acta Cryst D56:1341–1349

    Google Scholar 

  • Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP, Frank J, Carazo JM (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29

    Article  Google Scholar 

  • Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–623

    Article  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  ADS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  ADS  Google Scholar 

  • Spahn CM, Beckmann E, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae — tRNA-ribosome and subunit-subunit interactions. Cell 107:373–386

    Article  Google Scholar 

  • Spahn CMT, Gomez-Lorenzo MG, Grassucci GA, Jorgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JPG, Frank J (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23:1008–1019

    Article  Google Scholar 

  • Spirin AS (1968) How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome. Curr Mod Biol 2:115–127

    Google Scholar 

  • Spirin AS (2002) Ribosome as a molecular machine. FEBS Lett 514:2–10

    Article  Google Scholar 

  • Tama F, Valle M, Frank J, Brooks CL III (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100:9319–9323

    Article  ADS  Google Scholar 

  • Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J (2007) Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26:2421–2431

    Article  Google Scholar 

  • Trabnco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  Google Scholar 

  • Valle M, Sengupta J, Swami K, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK, Frank J (2002) Cryo-EM reveals an active role for the aminoacyl-tRNA in the accommodation process. EMBO J 21:3557–3567

    Article  Google Scholar 

  • Valle M, Zavialov AV, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114:123–134

    Article  Google Scholar 

  • Wang Y, Rader AJ, Bahar I, Jernigan RL (2004) Global ribosome motions revealed with elastic network model. J Struct Biol 147:302–314

    Article  Google Scholar 

  • Weixlbaumer A, Petry S, Dunham CM, Selmer M, Kelley AC, Ramakrishnan V (2007) Crystal structure of the ribosome recycling factor bound to the ribosome. Nat Struct Mol Biol 14:733–737

    Article  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr., Morgan-Warren RJ, Carter AP, von Rhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  ADS  Google Scholar 

  • Zavialov AV, Ehrenberg M (2003) Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114:113–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gao, H., Le Barron, J., Frank, J. (2009). Ribosomal Dynamics: Intrinsic Instability of a Molecular Machine. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_15

Download citation

Publish with us

Policies and ethics