Skip to main content

Opposite Actions in Reinforced Image Segmentation

  • Chapter
Oppositional Concepts in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 155))

  • 453 Accesses

Summary

In many vision-based applications we need to segment an object of interest in digital images. For methods which rely on a learning process, the lack of sufficient number of training samples is usually an obstacle, especially when the samples need to be manually prepared by an expert. In addition, none of the existing methods uses online feedback from the user in order to evaluate the generated results and continuously improve them. Considering these factors, a new algorithm based on reinforcement learning is discussed in this chapter. The approach starts with a limited number of training samples and improves its performance in the course of time.

A potential obstacle when we apply reinforcement learning into image-based applications is the large number of state-action pairs. In such cases, it is usually difficult to evaluate the state-action information especially when the agent is in the exploration mode. The opposition-based leaning is one of the methods that can be applied to converge to a solution faster in spite of a large state space. Using opposite actions we can update the agent’s knowledge more rapidly. The experiments show the results for a medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betrounia, N., Vermandela, M., Pasquierc, D., Maoucheb, S., Rousseaua, J.: Segmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filter. Computerized Medical Imaging and Graphics 29, 43–51 (2005)

    Article  Google Scholar 

  2. Nanayakkara, N.D., Samarabandu, J., Fenster, A.: Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations. Physics in Medicine and Biology 51, 1831–1848 (2006)

    Article  Google Scholar 

  3. Chiu, B., Freeman, G.H., Salama, M.M.A., Fenster, A.: Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour. Physics in Medicine and Biology 49, 4943–4960 (2004)

    Article  Google Scholar 

  4. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  5. Holt, R.J., Netravali, A.N.: Using Line Correspondences In Invariant Signatures For Curve Recognition. Image and Vision Computing 11(7), 440–446 (1993)

    Article  Google Scholar 

  6. Insana, M.F., Brown, D.G.: Acoustic scattering theory applied to soft biological tissues, Ultrasonic Scattering in biological tissues. CRC Press, Boca Raton (1993)

    Google Scholar 

  7. Ladak, H.M., Mao, F., Wang, Y., Downey, D.B., Steinman, D.A., Fenster, A.: Prostate boundary segmentation from 2D ultrasound images. Medical Physics 27, 1777–1788 (2000)

    Article  Google Scholar 

  8. Noble, J.A., Boukerroui, D.: Ultrasound Image Segmentation: A Survey. IEEE Transactions on Medical Imaging 25, 987–1010 (2006)

    Article  Google Scholar 

  9. Pathak, S.D.V., Chalana, D.R., Haynor, Kim, Y.: Edge-guided boundary delineation in prostate ultrasound images. IEEE Transactions on Medical Imaging 19, 1211–1219 (2000)

    Article  Google Scholar 

  10. Prater, J.S., Richard, W.D.: Segmenting ultrasound images of the prostate using neural networks. Ultrasound Imaging 14, 159–185 (1992)

    Article  Google Scholar 

  11. Rodriguez, W., Lastb, M., Kandel, A., Bunked, H.: 3-Dimensional curve similarity using string matching. Robotics and Autonomous Systems 49, 165–172 (2004)

    Article  Google Scholar 

  12. Shen, D., Zhan, Y., Davatzikos, C.: Segmentation of Prostate Boundaries From Ultrasound Images Using Statistical Shape Model. IEEE Transactions on Medical Imaging 22, 539–551 (2003)

    Article  Google Scholar 

  13. Sahba, F., Tizhoosh, H.R.: Filter Fusion for Image Enhancement Using Reinforcement Learning. In: Canadian Conference on Electrical and Computer Engineering, pp. 847–850 (2003)

    Google Scholar 

  14. Sahba, F., Tizhoosh, H.R., Salama, M.M.A.: Using Reinforcement Learning for Filter Fusion in Image Enhancement. In: The Fourth IASTED International Conference on Computational Intelligence, Calgary, Canada, pp. 262–266 (2005)

    Google Scholar 

  15. Sahba, F., Tizhoosh, H.R., Salama, M.M.A.: A Reinforcement Learning Framework for Medical Image Segmentation. In: The IEEE World Congress on Computational Intelligence (WCCI), Vancouver, Canada pp. 1238–1244 (2006)

    Google Scholar 

  16. Sahba, F., Tizhoosh, H.R., Salama, M.M.A.: Increasing object recognition rate using reinforced segmentation. In: The IEEE International Conference on Image Processing (ICIP), Atlanta, pp. 781–784 (2006)

    Google Scholar 

  17. Shokri, M., Tizhoosh, H.R.: Q(λ)-based Image Thresholding. In: Canadian Conference on Computer and Robot Vision, pp. 504–508 (2004)

    Google Scholar 

  18. Taylor, G.A.: A Reinforcement Learning Framework for Parameter Control in Computer Vision Applications. In: Proceedings of the First Canadian Conference on Computer and Robot Vision, pp. 496–503 (2004)

    Google Scholar 

  19. Tizhoosh, H.R., Taylor, G.W.: Reinforced Contrast Adaptation. International Journal of Image and Graphic 6, 377–392 (2006)

    Article  Google Scholar 

  20. Singh, S., Norving, P., Cohn, D.: Introduction to Reinforcement Learning. Harlequin Inc. (1996)

    Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  22. Wang, Y., Cardinal, H., Downey, D., Fenster, A.: Semiautomatic three-dimensional segmentation of the prostate using two dimensional ultrasound images. Medical physics 30, 887–897 (2003)

    Article  Google Scholar 

  23. Watkins, C.J.C.H., Dayan, P.: Q-Learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  24. Brunelli, R., Mich, O.: Histogram analysis for image retrieval. Pattern Recognition 34, 1625–1637 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hamid R. Tizhoosh Mario Ventresca

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahba, F., Tizhoosh, H.R. (2008). Opposite Actions in Reinforced Image Segmentation. In: Tizhoosh, H.R., Ventresca, M. (eds) Oppositional Concepts in Computational Intelligence. Studies in Computational Intelligence, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70829-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70829-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70826-1

  • Online ISBN: 978-3-540-70829-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics