Skip to main content

Numerical Modelling of Technical Combustion

  • Chapter
  • 4486 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 100))

Summary

This contribution gives a short overview over modern numerical combustion modelling. Numerical simulation of combustion is a multi-scale problem, because the specific issues of fluid mechanics and chemical reaction systems accumulate. There exist a large variety of combustion models for different flame types, which are more or less universal. For some turbulent reacting flows, existing methodologies are acceptably accurate, and have justifiable computational cost. Depending on the expected answers of numerical simulation, substantial advances are required and have to be worked out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct nu-merical simulation analysis of flame surface density concept for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)

    Google Scholar 

  • Borghi, R.: On the Structure and Morphology of Turbulent Premixed Flames. Recent Advantages in Aerospace Science, 117–138 (1985)

    Google Scholar 

  • Borghi, R.: Turbulent Combustion Modelling. Progress in Energy and Combustion Science 14, 245–292 (1988)

    Article  Google Scholar 

  • Borghi, R., Argueyrolles, B., Gauffie, G., Souhaite, P.: Application of a Presumed P.D.F. Model of Turbulent Combustion to Reciprocating Engines. Proc. Combust. Inst. 21, 1591–1599 (1986)

    Google Scholar 

  • Branley, N., Jones, W.P.: Large eddy simulation of a nonpre-mixed turbulent swirling flame. In: Rodi, W., Laurence, D. (eds.) Engineering Turbulence Modelling and Experiments, vol. 4, pp. 861–870. Elsevier Science Ltd., Amsterdam (1999)

    Chapter  Google Scholar 

  • Bray, K.N.C.: Methods on including realistic chemical reac-tion mechanisms in turbulent combustion model. In: Warnatz, J., Jäger, W. (eds.) Complex Chemical Reactions. Springer, Heidelberg (1987)

    Google Scholar 

  • Bray, K.N.C., Cant, R.S.: Some Applications of Kolmogorov‘s Turbulence Research in the Field of Combustion. In: Proceedings of the Royal Society of London, vol. 434, pp. 217–240 (1991); First published in Russion Dokl. Akad. NauSSSR, vol. 30(4). Translation by V. Levin

    Google Scholar 

  • Bray, K.N.C., Libby, P.: Passage times and Flamelet Crossing Frequencies in Premixed Turbulent Combustion. Combustion Science and Technology 47, 253–274 (1986)

    Article  Google Scholar 

  • Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronautica 4, 291–319 (1977)

    Article  Google Scholar 

  • Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of Flamelet Surface-To-Volume Ratio in Turbulent Premixed Combustion. Proc. Combust. Inst. 23, 809–815 (1990)

    Google Scholar 

  • Dopazo, C.: Recent Developments of Pdf Methods. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 375–474. Academic Press, London (1994)

    Google Scholar 

  • Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress in Energy and Combustion Science 34, 91–134 (2008)

    Article  Google Scholar 

  • El-Asrag, H., Menon, S.: Large eddy simulation of a bluff body stabilized swirling nonpremixed flame. Proc. Combust. Inst., 31 (2007)

    Google Scholar 

  • Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Progress in Energy and Combustion Science 30, 297–328 (2004)

    Article  Google Scholar 

  • Fox, R.O.: Computational methods for turbulent reacting flows. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Gouldin, F.C., Bray, K.N.C., Chen Chen, J.Y.: Chemical Clo-sure Model for Fractal Flamelets. Combustion and Flame 77, 241–259 (1989)

    Article  Google Scholar 

  • Hinze, J.O.: Turbulence. McGraw-Hill, New York (1959)

    Google Scholar 

  • Im, H.G., Lund, T.S., Ferziger, J.H.: Large eddy simulation of turbulent front flame propagation with dynamic subgrid models. Phy. Fluids A9, 3826–3833 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Kerstein, A.R.: Linear-eddy modeling of turbulent transport. Part IV. Structure of diffusion- flames. Combust. Sci. Tech. 81, 75–86 (1992)

    Article  Google Scholar 

  • Kim, S., Pitsch, H.: Conditional filtering method for large eddy simulation of turbulent nonpremixed combustion. Physics of Fluids 17, 105103-105103-12 (2005)

    Article  Google Scholar 

  • Yu, K.A., Bilger, R.W.: Conditional Moment Closure for turbulent combustion. Progress in Energy Combustion Science 25, 595–687 (1999)

    Article  Google Scholar 

  • Lam, S.H.: Singular Perturbation for Stiff Equations Using Numerical Methods. In: Casci, C. (ed.) Recent Advances in the Aerospace Sciences, pp. 3–20. Plenum Press, New York (1985)

    Google Scholar 

  • Lesieur, M., Metais, O.: New trends in Large-Eddy simulations of turbulence. Annu. Rev. Fluid. Mech. 28, 45–82 (1996)

    Article  MathSciNet  Google Scholar 

  • Libby, P.A., Williams, F.A. (eds.): Turbulent reacting flows. Academic Press, London (1994)

    MATH  Google Scholar 

  • Lipatnikov, A.N., Chomiak, J.: Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations. Progress in Energy and Combustion Science 18, 1–74 (2001)

    Google Scholar 

  • Maas, U., Pope, S.B.: Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Combustion Space. Combustion and Flame 88, 239–264 (1992)

    Article  Google Scholar 

  • Mantel, T., Borghi, R.: A New Model of Premixed Wrinkled Flame Propagation Based on Scalar Dissipation Equation. Combustion and Flame 96, 443–457 (1994)

    Article  Google Scholar 

  • Moin, M.: Progress in Large-Eddy simulations of turbulent flows, AIAA paper 97-0749 (1997)

    Google Scholar 

  • Moin, P., Mahesh, K.: Direct numerical simulation: a tool for turbulence research. Annu. Rev. Fluid Mech. 30, 539–578 (1998)

    Article  MathSciNet  Google Scholar 

  • Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, Amsterdam (1987)

    MATH  Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Science. McGraw-Hill, New York (1990)

    Google Scholar 

  • Peters, N.: Laminar Flamelets Concepts in Turbulent Combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)

    Google Scholar 

  • Peters, N.: Premixed, non-premixed and partially premixed turbulent combustion with fast chemistry. In: Proceedings of the Anglo-German Combustion Symposium, pp. 26–33. The British Section of the Combustion Institute (1993)

    Google Scholar 

  • Peters, N.: The Turbulent Burning Velocity for Large Scale and Small-Scale Turbulence. Journal of Fluid Mechanics 384, 107–132 (1999)

    Article  MATH  Google Scholar 

  • Peters, N.: Turbulent Combustion. Cambridge University Press, London (2000)

    MATH  Google Scholar 

  • Pierce, C.D., Moin, P.: Large Eddy Simulation of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1-11 (1998)

    Google Scholar 

  • Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R. T. Edwards, Inc., Philadelphia (2001)

    Google Scholar 

  • Poinsot, T.: Using direct numerial simulation to understand turbulent combustion. Proc. Combust. Inst. 26, 219–232 (1996)

    Google Scholar 

  • Pope, S.B.: A Monte Carlo Method for the Pdf Equations of Turbulent Reacting Flows. Combustion Science and Technology 17, 299–314 (1981)

    Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge University Press, London (2000)

    MATH  Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations, I, The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  • TCP-EBI, Results from Calculations performed at the Uni-versity of Karlsruhe. Institute for Technical Chemistry and Polymer Chemis-try (TCP) and Engler-Bunte-Institute, Division of Combustion Technology (EBI). Fig. 6: D. Großschmidt (EBI), Fig. 7: M. Hettel (EBI), Fig. 8: J. Fröhlich (TCP), Fig. 9: P. Habisreuther (EBI), Fig. 10: M. Lecanu (TCP), Fig. 11: J. Denev (TCP) (2007)

    Google Scholar 

  • Turns, S.R.: An introduction to combustion: concepts and applications. McGraw-Hill, Boston (2000)

    Google Scholar 

  • Weller, H.G., Marooney, C.J., Gosman, A.D.: A New Spectral Method for Calculation of the Time-Varying Area of a Laminar Flame in Homogeneous Turbulence. Proc. Combust. Inst. 23 (1990)

    Google Scholar 

  • Wilcox, C.C.: Turbulence Modeling for CFD. DCW Industries (1998)

    Google Scholar 

  • Williams, F.A.: Combustion Theory. Addison-Wesley Publishing Company, Reading (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bockhorn, H., Habisreuther, P., Hettel, M. (2009). Numerical Modelling of Technical Combustion. In: Hirschel, E.H., Krause, E. (eds) 100 Volumes of ‘Notes on Numerical Fluid Mechanics’. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70805-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70805-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70804-9

  • Online ISBN: 978-3-540-70805-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics