Abstract
We present a multi-dimensional mapping strategy using multiobjective genetic programming (MOGP) to search for the (near-)optimal feature extraction pre-processing stages for pattern classification as well as optimizing the dimensionality of the decision space. We search for the set of mappings with optimal dimensionality to project the input space into a decision space with maximized class separability. The steady-state Pareto converging genetic programming (PCGP) has been used to implement this multi-dimensional MOGP. We examine the proposed method using eight benchmark datasets from the UCI database and the Statlog project to make quantitative comparison with conventional classifiers. We conclude that MMOGP outperforms the comparator classifiers due to its optimized feature extraction process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Programs. The MIT Press, Cambridge (1994)
Langdon, W.B.: Genetic Programming and Data Structures: Genetic programming + Data Structures = Automatic Programming. Kluwer Academic Publishers, Dordrecht (1998)
Raik, S., Durnota, B.: The Evolution Of Sporting Strategies. In: Stonier, R., Yu, X. (eds.) Complex Systems ’94: Mechanisms of Adaption, IOS Press, Amsterdam (1994)
Sherrah, J.R., Bogner, R.E., Bouzerdoum, A.: The Evolutionary Pre-Processor: Automatic Feature Extraction for Supervised Classification using Genetic Programming. In: Proc. of the 2nd Ann. Conf. Genetic Programming 1997, pp. 304–312 (1997)
Muni, D.P., Pal, N.R., Das, J.: A Novel Approach to Design Classifiers using Genetic Programming. IEEE Trans. on Evolutionary Computation 8(2), 183–196 (2004)
Bot, M.C.J.: Feature Extraction for the k-Nearest Neighbor Classifier with Genetic Programming. In: Miller, J., et al. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 256–267. Springer, Heidelberg (2001)
Zhang, Y., Rockett, P.I.: Evolving Optimal Feature Extraction using Multi-objective Genetic Programming: A Methodology and Preliminary Study on Edge Detection. In: GECCO 2005, pp. 795–802 (2005)
Zhang, Y., Rockett, P.I.: Feature Extraction using Multi-objective Genetic Programming. In: Jin, Y. (ed.) Multi-Objective Machine Learning, pp. 79–106. Springer, Heidelberg (2006)
Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10(3), 283–314 (2002)
Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Dietterich, T.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10(7), 1895–1923 (1998)
Alpaydin, E.: Combined 5 × 2 cv F-test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11(8), 1885–1892 (1999)
Zhang, Y., Zhang, M.: A Multiple-Output Program Tree Structure in Genetic Programming. Tech. Report CS-TR-04/14, Victoria University, New Zealand (2004)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Chichester (2000)
Camastra, F.: Data Dimensionality Estimation Methods: A Survey. Pattern Recognition 36(12), 2945–2954 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Rockett, P.I. (2007). Multiobjective Genetic Programming Feature Extraction with Optimized Dimensionality. In: Saad, A., Dahal, K., Sarfraz, M., Roy, R. (eds) Soft Computing in Industrial Applications. Advances in Soft Computing, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70706-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-70706-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70704-2
Online ISBN: 978-3-540-70706-6
eBook Packages: EngineeringEngineering (R0)