Skip to main content

Multiobjective Genetic Programming Feature Extraction with Optimized Dimensionality

  • Conference paper
Soft Computing in Industrial Applications

Part of the book series: Advances in Soft Computing ((AINSC,volume 39))

Abstract

We present a multi-dimensional mapping strategy using multiobjective genetic programming (MOGP) to search for the (near-)optimal feature extraction pre-processing stages for pattern classification as well as optimizing the dimensionality of the decision space. We search for the set of mappings with optimal dimensionality to project the input space into a decision space with maximized class separability. The steady-state Pareto converging genetic programming (PCGP) has been used to implement this multi-dimensional MOGP. We examine the proposed method using eight benchmark datasets from the UCI database and the Statlog project to make quantitative comparison with conventional classifiers. We conclude that MMOGP outperforms the comparator classifiers due to its optimized feature extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Programs. The MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  2. Langdon, W.B.: Genetic Programming and Data Structures: Genetic programming + Data Structures = Automatic Programming. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  3. Raik, S., Durnota, B.: The Evolution Of Sporting Strategies. In: Stonier, R., Yu, X. (eds.) Complex Systems ’94: Mechanisms of Adaption, IOS Press, Amsterdam (1994)

    Google Scholar 

  4. Sherrah, J.R., Bogner, R.E., Bouzerdoum, A.: The Evolutionary Pre-Processor: Automatic Feature Extraction for Supervised Classification using Genetic Programming. In: Proc. of the 2nd Ann. Conf. Genetic Programming 1997, pp. 304–312 (1997)

    Google Scholar 

  5. Muni, D.P., Pal, N.R., Das, J.: A Novel Approach to Design Classifiers using Genetic Programming. IEEE Trans. on Evolutionary Computation 8(2), 183–196 (2004)

    Article  Google Scholar 

  6. Bot, M.C.J.: Feature Extraction for the k-Nearest Neighbor Classifier with Genetic Programming. In: Miller, J., et al. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 256–267. Springer, Heidelberg (2001)

    Google Scholar 

  7. Zhang, Y., Rockett, P.I.: Evolving Optimal Feature Extraction using Multi-objective Genetic Programming: A Methodology and Preliminary Study on Edge Detection. In: GECCO 2005, pp. 795–802 (2005)

    Google Scholar 

  8. Zhang, Y., Rockett, P.I.: Feature Extraction using Multi-objective Genetic Programming. In: Jin, Y. (ed.) Multi-Objective Machine Learning, pp. 79–106. Springer, Heidelberg (2006)

    Google Scholar 

  9. Kumar, R., Rockett, P.I.: Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimization by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10(3), 283–314 (2002)

    Article  Google Scholar 

  10. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  11. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  12. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  13. Dietterich, T.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  14. Alpaydin, E.: Combined 5 × 2 cv F-test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11(8), 1885–1892 (1999)

    Article  Google Scholar 

  15. Zhang, Y., Zhang, M.: A Multiple-Output Program Tree Structure in Genetic Programming. Tech. Report CS-TR-04/14, Victoria University, New Zealand (2004)

    Google Scholar 

  16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Chichester (2000)

    Google Scholar 

  17. Camastra, F.: Data Dimensionality Estimation Methods: A Survey. Pattern Recognition 36(12), 2945–2954 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashraf Saad Keshav Dahal Muhammad Sarfraz Rajkumar Roy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Rockett, P.I. (2007). Multiobjective Genetic Programming Feature Extraction with Optimized Dimensionality. In: Saad, A., Dahal, K., Sarfraz, M., Roy, R. (eds) Soft Computing in Industrial Applications. Advances in Soft Computing, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70706-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70706-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70704-2

  • Online ISBN: 978-3-540-70706-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics