Input Disturbance Suppression for Port-Hamiltonian Systems: An Internal Model Approach

  • Luca Gentili
  • Andrea Paoli
  • Claudio Bonivento
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 353)


In this paper an internal model based approach to periodic input disturbance suppression for port-Hamiltonian systems is presented; more specifically, an adaptive solution able to deal with unknown periodic signal belonging to a given class is introduced.

After an introductive section, the adaptive internal model design procedure is presented in order to solve the input disturbance problem. This theoretical machinery is specialized for the energy-based port-Hamiltonian framework in order to prove the global asymptotical stability of the solution.

Finally, in order to clearly point out the effectiveness of the presented design procedure a tracking problem is solved for a robotic manipulator affected by torque ripples.


Port-Hamiltonian systems Internal Model Control Adaptive Control Input Disturbance Suppression Robot Manipulator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astol. A, Isidori A, Marconi L (2003) A note on disturbance suppression for hamiltonian systems by state feedback. 2nd IFAC Workshop LHMNLC, Seville, SpainGoogle Scholar
  2. 2.
    Bonivento C, Gentili L, Paoli A (2004a) Internal model based fault tolerant control of a robot manipulator. 43rd Conference on Decision and Control, Paradise Island, BahamasGoogle Scholar
  3. 3.
    Bonivento C, Isidori A, Marconi L, Paoli A (2004b) Implicit fault tolerant control: Application to induction motors. Automatica 40(3):355–371zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Byrnes C, Delli Priscoli F, Isidori A (1997a) Output regulation of uncertain nonlinear systems. Birkhäuser, BostonzbMATHGoogle Scholar
  5. 5.
    Canudas de Wit C, Praly L (2000) Adaptive eccentricity compensation. IEEE Transactions on Control Systems Technology 8(5):757–766CrossRefGoogle Scholar
  6. 6.
    Fujimoto K, Sakurama K, Sugie T (2003) Trajectory tracking control of port-controlled hamiltonian systems via generalized canonical transformations. Automatica 39(12):2059–2069zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gentili L, van der Schaft A (2003) Regulation and input disturbance suppression for port-controlled Hamiltonian systems. 2nd IFAC Workshop LHMNLC, Seville, SpainGoogle Scholar
  8. 8.
    Isidori A (1995) Nonlinear Control Systems. Springer-Verlag, LondonzbMATHGoogle Scholar
  9. 9.
    Isidori A, Marconi L, Serrani A (2003) Robust Autonomous Guidance: An Internal Model-based Approach. Limited series Advances in Industrial Control, Springer Verlag, LondonGoogle Scholar
  10. 10.
    Maschke B, van der Schaft A (1992) Port-controlled hamiltonian system: modelling origins and system theoretic approach. 2nd IFAC NOLCOS, Bordeaux, FranceGoogle Scholar
  11. 11.
    Nikiforov V (1998) Adaptive non-linear tracking with complete compensation of unknown disturbances. European Journal of Control 4:132–139zbMATHGoogle Scholar
  12. 12.
    Ortega R (2003) Some applications and recent results on passivity based control. 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, SpainGoogle Scholar
  13. 13.
    Serrani A, Isidori A, Marconi L (2001) Semiglobal output regulation with adaptive internal model. IEEE Transaction On Automatic Control 46(8):1178–1194zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    van der Schaft A (1999) L 2-gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, LondonGoogle Scholar
  15. 15.
    Bonivento C, Gentili L, Marconi L (2005) Balanced Robust Regulation of a Magnetic Levitation System. IEEE Tran. Control System Technology 13(6):1036–1044CrossRefGoogle Scholar
  16. 16.
    Alleyne A (2000) Control of a class of nonlinear systems subject to periodic exogenous signals. IEEE Trans. on Control Systems Technology 8(2):279–287CrossRefGoogle Scholar
  17. 17.
    Marino R, Santosuosso GL, Tomei P (2003) Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica 19(10):1755–1761CrossRefMathSciNetGoogle Scholar
  18. 18.
    Bodson M, Douglas S C (1997) Adaptive algorithms for the rejection of periodic disturbances with unknown frequencies. Automatica 33(12):2213–2221zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ortega R, van der Schaft A, Maschke B, Escobar G (1999) Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4):585–596CrossRefGoogle Scholar
  20. 20.
    Bonivento C, Gentili L, Paoli A (2005) Internal model based framework for tracking and fault tolerant control of a permanent magnet synchronous motor. IFAC World Congress, PrahaGoogle Scholar
  21. 21.
    Canudas de Wit C, Praly L (2000) Adaptive eccentricity compensation. IEEE Transactions on Control Systems Technology 8(5):757–766CrossRefGoogle Scholar
  22. 22.
    Khalil H K (2002) Nonlinear Systems 3rd ed. Prentice HallGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luca Gentili
    • 1
  • Andrea Paoli
    • 1
  • Claudio Bonivento
    • 1
  1. 1.Center for Research on Complex Automated Systems (CASY) “Giuseppe Evangelisti” - DEIS - Department of Electronic Computer Science and SystemsUniversity of BolognaItaly

Personalised recommendations