On the Impact of Social Network Profiling on Anonymity

  • Claudia Diaz
  • Carmela Troncoso
  • Andrei Serjantov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5134)


This paper studies anonymity in a setting where individuals who communicate with each other over an anonymous channel are also members of a social network. In this setting the social network graph is known to the attacker. We propose a Bayesian method to combine multiple available sources of information and obtain an overall measure of anonymity. We study the effects of network size and find that in this case anonymity degrades when the network grows. We also consider adversaries with incomplete or erroneous information; characterize their knowledge of the social network by its quantity, quality and depth; and discuss the implications of these properties for anonymity.


Social Network Small World Network Noisy Version Anonymous Communication Social Network Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  3. 3.
    Clauß, S.: A framework for quantification of linkability within a privacy-enhancing identity management system. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 191–205. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Clauß, S., Schiffner, S.: Structuring anonymity metrics. In: Proceedings of the ACM Workshop on Digital Identity Management, pp. 55–62 (2006)Google Scholar
  5. 5.
    Cottrell, L.: Mixmaster & remailer attacks (unpublished manuscript),
  6. 6.
    Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type iii anonymous remailer protocol. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy, pp. 2–15 (2003)Google Scholar
  8. 8.
    Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Diaz, C., Claessens, J., Seys, S., Preneel, B.: Information theory and anonymity. In: Macq, B., Quisquater, J.-J. (eds.) Werkgemeenschap voor Informatie en Communicatietheorie, pp. 179–186 (2002)Google Scholar
  10. 10.
    Diaz, C., Preneel, B.: Reasoning about the anonymity provided by pool mixes that generate dummy traffic. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 309–325. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Díaz, C., Serjantov, A.: Generalising mixes. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 18–31. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Diaz, C., Troncoso, C., Danezis, G.: Does additional information always reduce anonymity? In: Yu, T. (ed.) Workshop on Privacy in the Electronic Society 2007, pp. 72–75. ACM, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320. USENIX (2004)Google Scholar
  15. 15.
    Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-go MIXes: Providing probabilistic anonymity in an open system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 83–98. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Mathewson, N., Dingledine, R.: Practical traffic analysis: Extending and resisting statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 17–34. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Serjantov, A., Dingledine, R., Syverson, P.: From a trickle to a flood: Active attacks on several mix types. In: Petitcolas, F. (ed.) IH 2002. LNCS, vol. 2578. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Shannon, C.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)MathSciNetGoogle Scholar
  20. 20.
    Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster protocol - version 2 (2003),
  21. 21.
    Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Claudia Diaz
    • 1
  • Carmela Troncoso
    • 1
  • Andrei Serjantov
    • 2
  1. 1.K.U. Leuven ESAT-COSICLeuven-HeverleeBelgium
  2. 2.The Free Haven Project 

Personalised recommendations