Gauge symmetries characterize a class of physical theories, so-called gauge theories or gauge field theories, based on the requirement of the invariance under a group of transformations, so-called gauge transformations, which occur in a theory's framework if the theory comprises more variables than there are physically independent degrees of freedom. Gauge ► symmetry was firstly acknowledged in Maxwell's electrodynamics, where the vector potential shows a freedom of transformation in the sense that it is not uniquely determined by the Maxwell field equations, but only up to adding the derivative of a scalar function. Since all three fundamental quantum field theoretic interactions as well as gravity can be reconstructed within a gauge theoretic framework, gauge field theories represent the backbone of modern physics today, that is, the physics of the Standard Model and beyond. ► Quantum field theory; particle physics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. 1.
    J. L. Anderson: Principles of Relativity Physics. Academic, New York (1967).Google Scholar
  2. 2.
    S. Y. Auyang: How is Quantum Field Theory Possible? Oxford University Press, New York (1995).Google Scholar
  3. 3.
    G. Belot: Understanding Electromagnetism. The British Journal for the Philosophy of Science. 49: 531–55 (1998).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    K. Brading, H. R. Brown: Are Gauge Symmetry Transformations Observable? The British Journal for the Philosophy of Science. 55 (4): 645–65 (2004).CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. R. Brown: Aspects of Objectivity in Quantum Mechanics. In J. Butterfield, Pagonis, C., editors. From Physics to Philosophy. Cambridge University Press, Cambridge (1999).Google Scholar
  6. 6.
    Y. M. Cho: Einstein Lagrangian as the translational Yang-Mills Lagrangian. Physical Review. D 14 (10): 2521–525 (1976).ADSMathSciNetGoogle Scholar
  7. 7.
    J. Earman: Gauge Matters. Philosophy of Science. 69 (3), Suppl.: S209–S220 (2002).CrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Earman: Tracking Down Gauge: An Ode to the Constrained Hamiltonian Formalism. In: K. Brading, E. Castellani, editors. Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003).Google Scholar
  9. 9.
    D. Giulini: Remarks on the Notions of General Covariance and Background Independence. In: E. Seiler, I.-O. Stamatescu, editors. Approaches to Fundamental Physics. Springer, Berlin (2007).Google Scholar
  10. 10.
    K. Hayashi, T. Shirafuji: New General Relativity. Physical Review. D 19 (12): 3524–553 (1979).ADSMathSciNetGoogle Scholar
  11. 11.
    R. Healey: On the Reality of Gauge Potentials. Philosophy of Science. 68 (4): 432–55 (2001).CrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Healey: Gauge Theories and Holisms. Studies in History and Philosophy of Modern Physics. 35 (4): 619–42 (2004).CrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Healey: Gauging What's Real. Oxford University Press, New York (2007).MATHCrossRefGoogle Scholar
  14. 14.
    F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman: Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance. Physics Reports. 258: 1–171 (1995).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. Ivanenko, G. Sardanashvily: The Gauge Treatment of Gravity. Physics Reports. 94 (1): 1–45 (1983).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    C. Liu: Gauge Gravity and the Unification of Natural Forces. International Studies in the Philosophy of Science. 17 (2): 143–59 (2003).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    H. Lyre: The Principles of Gauging. Philosophy of Science. 68 (3) Suppl.: S371–S381 (2001).CrossRefMathSciNetGoogle Scholar
  18. 18.
    H. Lyre: Holism and Structuralism in U(1) Gauge Theory. Studies in History and Philosophy of Modern Physics. 35 (4): 643–70 (2004).CrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Lyre, T. O. Eynck: Curve It, Gauge It, or Leave It? Underdetermination in Gravitational Theories. Journal for General Philosophy of Science. 34 (2): 277–303 (2003).CrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Martin: Gauge Principles, Gauge Arguments and the Logic of Nature. Philosophy of Science. 69 (3), Suppl.: S221–S234 (2002).CrossRefGoogle Scholar
  21. 21.
    J. Mattingly: Which Gauge Matters. Studies in History and Philosophy of Modern Physics. 37 (2): 243–62 (2006).CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. M. Nester: Is there Really a Problem with the Teleparallel Theory? Classical and Quantum Gravity. 5: 1003–010 (1988).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    A. Nounou: A Fourth Way to the Aharonov-Bohm Effect. In: K. Brading, E. Castellani, editors. Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003).Google Scholar
  24. 24.
    M. Redhead: The Interpretation of Gauge Symmetry. In: M. Kuhlmann, H. Lyre, A. Wayne, editors. Ontological Aspects of Quantum Field Theory. World Scientific, Singapore (2002).Google Scholar
  25. 25.
    P. Teller: The Gauge Argument. Philosophy of Science. 67 (3), Suppl.: S466–S481 (2000).CrossRefMathSciNetGoogle Scholar
  26. 26.
    R. Utiyama: Invariant Theoretical Interpretation of Interaction. Physical Review. 101 (5): 1597–1607 (1956).MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    T. T. Wu, C. N. Yang: Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields. Physical Review. D 12 (12): 3845–857 (1975).ADSMathSciNetGoogle Scholar
  28. 28.
    C. N. Yang: Integral Formalism for Gauge Fields. Physical Review Letters. 33 (7): 445–447 (1974).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    H. Weyl: Gravitation und Elektrizität. Sitzungsberichte der Preuβischen Akademie der Wissenschaften. p. 465–480 (1918).Google Scholar

Secondary Literature

  1. 30.
    T.-P. Cheng, L.-F. Li: Gauge Theory of Elementary Particle Physics: Problems and Solutions. Oxford University Press, New York (2000).Google Scholar
  2. 31.
    M. Göckeler, T. Schücker: Differential Geometry, Gauge Theories and Gravity. Cambridge University Press, Cambridge (1987).Google Scholar
  3. 32.
    R. Gambini, J. Pullin: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (1996).MATHCrossRefGoogle Scholar
  4. 33.
    M. Henneaux, C. Teitelboim: Quantization of Gauge Systems. Princeton University Press, Princeton (1992).MATHGoogle Scholar
  5. 34.
    M. Nakahara: Geometry, Topology and Physics. IOP Publishing, Bristol (1990).MATHCrossRefGoogle Scholar
  6. 35.
    L. H. Ryder: Quantum Field Theory. Cambridge University Press, Cambridge (1985, 21996).MATHGoogle Scholar
  7. 36.
    T. Y. Cao: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge (1997).MATHCrossRefGoogle Scholar
  8. 37.
    L. O'Raifeartaigh: The Dawning of Gauge Theory. Princeton University Press, Princeton (1995).Google Scholar
  9. 38.
    L. O'Raifeartaigh, N. Straumann: Gauge Theory: Historical Origins and Some Modern Developments. Reviews of Modern Physics. 72 (1): 1–23 (2000).CrossRefADSMathSciNetGoogle Scholar
  10. 39.
    J. C. Taylor: Gauge Theories in the Twentieth Century. World Scientific, Singapore (2001).MATHCrossRefGoogle Scholar
  11. 40.
    V. P. Vizgin: Unified Field Theories. Birkhäuser, Basel (1994).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Holger Lyre
    • 1
  1. 1.Philosophy DepartmentUniversity of BielefeldGermany

Personalised recommendations