Skip to main content

Gauge Symmetry

  • Chapter
  • First Online:
Compendium of Quantum Physics

Gauge symmetries characterize a class of physical theories, so-called gauge theories or gauge field theories, based on the requirement of the invariance under a group of transformations, so-called gauge transformations, which occur in a theory's framework if the theory comprises more variables than there are physically independent degrees of freedom. Gauge ► symmetry was firstly acknowledged in Maxwell's electrodynamics, where the vector potential shows a freedom of transformation in the sense that it is not uniquely determined by the Maxwell field equations, but only up to adding the derivative of a scalar function. Since all three fundamental quantum field theoretic interactions as well as gravity can be reconstructed within a gauge theoretic framework, gauge field theories represent the backbone of modern physics today, that is, the physics of the Standard Model and beyond. ► Quantum field theory; particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. J. L. Anderson: Principles of Relativity Physics. Academic, New York (1967).

    Book  Google Scholar 

  2. S. Y. Auyang: How is Quantum Field Theory Possible? Oxford University Press, New York (1995).

    Google Scholar 

  3. G. Belot: Understanding Electromagnetism. The British Journal for the Philosophy of Science. 49: 531–55 (1998).

    Article  MathSciNet  Google Scholar 

  4. K. Brading, H. R. Brown: Are Gauge Symmetry Transformations Observable? The British Journal for the Philosophy of Science. 55 (4): 645–65 (2004).

    Article  MathSciNet  Google Scholar 

  5. H. R. Brown: Aspects of Objectivity in Quantum Mechanics. In J. Butterfield, Pagonis, C., editors. From Physics to Philosophy. Cambridge University Press, Cambridge (1999).

    Google Scholar 

  6. Y. M. Cho: Einstein Lagrangian as the translational Yang-Mills Lagrangian. Physical Review. D 14 (10): 2521–525 (1976).

    ADS  MathSciNet  Google Scholar 

  7. J. Earman: Gauge Matters. Philosophy of Science. 69 (3), Suppl.: S209–S220 (2002).

    Article  MathSciNet  Google Scholar 

  8. J. Earman: Tracking Down Gauge: An Ode to the Constrained Hamiltonian Formalism. In: K. Brading, E. Castellani, editors. Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003).

    Google Scholar 

  9. D. Giulini: Remarks on the Notions of General Covariance and Background Independence. In: E. Seiler, I.-O. Stamatescu, editors. Approaches to Fundamental Physics. Springer, Berlin (2007).

    Google Scholar 

  10. K. Hayashi, T. Shirafuji: New General Relativity. Physical Review. D 19 (12): 3524–553 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  11. R. Healey: On the Reality of Gauge Potentials. Philosophy of Science. 68 (4): 432–55 (2001).

    Article  MathSciNet  Google Scholar 

  12. R. Healey: Gauge Theories and Holisms. Studies in History and Philosophy of Modern Physics. 35 (4): 619–42 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Healey: Gauging What's Real. Oxford University Press, New York (2007).

    Book  Google Scholar 

  14. F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman: Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance. Physics Reports. 258: 1–171 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Ivanenko, G. Sardanashvily: The Gauge Treatment of Gravity. Physics Reports. 94 (1): 1–45 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Liu: Gauge Gravity and the Unification of Natural Forces. International Studies in the Philosophy of Science. 17 (2): 143–59 (2003).

    Article  MathSciNet  Google Scholar 

  17. H. Lyre: The Principles of Gauging. Philosophy of Science. 68 (3) Suppl.: S371–S381 (2001).

    Article  MathSciNet  Google Scholar 

  18. H. Lyre: Holism and Structuralism in U(1) Gauge Theory. Studies in History and Philosophy of Modern Physics. 35 (4): 643–70 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  19. H. Lyre, T. O. Eynck: Curve It, Gauge It, or Leave It? Underdetermination in Gravitational Theories. Journal for General Philosophy of Science. 34 (2): 277–303 (2003).

    Article  MathSciNet  Google Scholar 

  20. C. Martin: Gauge Principles, Gauge Arguments and the Logic of Nature. Philosophy of Science. 69 (3), Suppl.: S221–S234 (2002).

    Article  MathSciNet  Google Scholar 

  21. J. Mattingly: Which Gauge Matters. Studies in History and Philosophy of Modern Physics. 37 (2): 243–62 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. M. Nester: Is there Really a Problem with the Teleparallel Theory? Classical and Quantum Gravity. 5: 1003–010 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Nounou: A Fourth Way to the Aharonov-Bohm Effect. In: K. Brading, E. Castellani, editors. Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003).

    Google Scholar 

  24. M. Redhead: The Interpretation of Gauge Symmetry. In: M. Kuhlmann, H. Lyre, A. Wayne, editors. Ontological Aspects of Quantum Field Theory. World Scientific, Singapore (2002).

    Google Scholar 

  25. P. Teller: The Gauge Argument. Philosophy of Science. 67 (3), Suppl.: S466–S481 (2000).

    Article  MathSciNet  Google Scholar 

  26. R. Utiyama: Invariant Theoretical Interpretation of Interaction. Physical Review. 101 (5): 1597–1607 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  27. T. T. Wu, C. N. Yang: Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields. Physical Review. D 12 (12): 3845–857 (1975).

    ADS  MathSciNet  Google Scholar 

  28. C. N. Yang: Integral Formalism for Gauge Fields. Physical Review Letters. 33 (7): 445–447 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Weyl: Gravitation und Elektrizität. Sitzungsberichte der Preuβischen Akademie der Wissenschaften. p. 465–480 (1918).

    Google Scholar 

Secondary Literature

  1. T.-P. Cheng, L.-F. Li: Gauge Theory of Elementary Particle Physics: Problems and Solutions. Oxford University Press, New York (2000).

    Google Scholar 

  2. M. Göckeler, T. Schücker: Differential Geometry, Gauge Theories and Gravity. Cambridge University Press, Cambridge (1987).

    Google Scholar 

  3. R. Gambini, J. Pullin: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (1996).

    Book  Google Scholar 

  4. M. Henneaux, C. Teitelboim: Quantization of Gauge Systems. Princeton University Press, Princeton (1992).

    Book  Google Scholar 

  5. M. Nakahara: Geometry, Topology and Physics. IOP Publishing, Bristol (1990).

    Book  Google Scholar 

  6. L. H. Ryder: Quantum Field Theory. Cambridge University Press, Cambridge (1985, 21996).

    Book  Google Scholar 

  7. T. Y. Cao: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge (1997).

    Book  Google Scholar 

  8. L. O'Raifeartaigh: The Dawning of Gauge Theory. Princeton University Press, Princeton (1995).

    MATH  Google Scholar 

  9. L. O'Raifeartaigh, N. Straumann: Gauge Theory: Historical Origins and Some Modern Developments. Reviews of Modern Physics. 72 (1): 1–23 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. C. Taylor: Gauge Theories in the Twentieth Century. World Scientific, Singapore (2001).

    Book  Google Scholar 

  11. V. P. Vizgin: Unified Field Theories. Birkhäuser, Basel (1994).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyre, H. (2009). Gauge Symmetry. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics