Gauge symmetries characterize a class of physical theories, so-called gauge theories or gauge field theories, based on the requirement of the invariance under a group of transformations, so-called gauge transformations, which occur in a theory's framework if the theory comprises more variables than there are physically independent degrees of freedom. Gauge ► symmetry was firstly acknowledged in Maxwell's electrodynamics, where the vector potential shows a freedom of transformation in the sense that it is not uniquely determined by the Maxwell field equations, but only up to adding the derivative of a scalar function. Since all three fundamental quantum field theoretic interactions as well as gravity can be reconstructed within a gauge theoretic framework, gauge field theories represent the backbone of modern physics today, that is, the physics of the Standard Model and beyond. ► Quantum field theory; particle physics.

Keywords

Gauge Theory Gauge Group Gauge Symmetry Principal Bundle Gauge Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. 1.
    J. L. Anderson: Principles of Relativity Physics. Academic, New York (1967).Google Scholar
  2. 2.
    S. Y. Auyang: How is Quantum Field Theory Possible? Oxford University Press, New York (1995).Google Scholar
  3. 3.
    G. Belot: Understanding Electromagnetism. The British Journal for the Philosophy of Science. 49: 531–55 (1998).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    K. Brading, H. R. Brown: Are Gauge Symmetry Transformations Observable? The British Journal for the Philosophy of Science. 55 (4): 645–65 (2004).CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. R. Brown: Aspects of Objectivity in Quantum Mechanics. In J. Butterfield, Pagonis, C., editors. From Physics to Philosophy. Cambridge University Press, Cambridge (1999).Google Scholar
  6. 6.
    Y. M. Cho: Einstein Lagrangian as the translational Yang-Mills Lagrangian. Physical Review. D 14 (10): 2521–525 (1976).ADSMathSciNetGoogle Scholar
  7. 7.
    J. Earman: Gauge Matters. Philosophy of Science. 69 (3), Suppl.: S209–S220 (2002).CrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Earman: Tracking Down Gauge: An Ode to the Constrained Hamiltonian Formalism. In: K. Brading, E. Castellani, editors. Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003).Google Scholar
  9. 9.
    D. Giulini: Remarks on the Notions of General Covariance and Background Independence. In: E. Seiler, I.-O. Stamatescu, editors. Approaches to Fundamental Physics. Springer, Berlin (2007).Google Scholar
  10. 10.
    K. Hayashi, T. Shirafuji: New General Relativity. Physical Review. D 19 (12): 3524–553 (1979).ADSMathSciNetGoogle Scholar
  11. 11.
    R. Healey: On the Reality of Gauge Potentials. Philosophy of Science. 68 (4): 432–55 (2001).CrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Healey: Gauge Theories and Holisms. Studies in History and Philosophy of Modern Physics. 35 (4): 619–42 (2004).CrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Healey: Gauging What's Real. Oxford University Press, New York (2007).MATHCrossRefGoogle Scholar
  14. 14.
    F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman: Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance. Physics Reports. 258: 1–171 (1995).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. Ivanenko, G. Sardanashvily: The Gauge Treatment of Gravity. Physics Reports. 94 (1): 1–45 (1983).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    C. Liu: Gauge Gravity and the Unification of Natural Forces. International Studies in the Philosophy of Science. 17 (2): 143–59 (2003).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    H. Lyre: The Principles of Gauging. Philosophy of Science. 68 (3) Suppl.: S371–S381 (2001).CrossRefMathSciNetGoogle Scholar
  18. 18.
    H. Lyre: Holism and Structuralism in U(1) Gauge Theory. Studies in History and Philosophy of Modern Physics. 35 (4): 643–70 (2004).CrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Lyre, T. O. Eynck: Curve It, Gauge It, or Leave It? Underdetermination in Gravitational Theories. Journal for General Philosophy of Science. 34 (2): 277–303 (2003).CrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Martin: Gauge Principles, Gauge Arguments and the Logic of Nature. Philosophy of Science. 69 (3), Suppl.: S221–S234 (2002).CrossRefGoogle Scholar
  21. 21.
    J. Mattingly: Which Gauge Matters. Studies in History and Philosophy of Modern Physics. 37 (2): 243–62 (2006).CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. M. Nester: Is there Really a Problem with the Teleparallel Theory? Classical and Quantum Gravity. 5: 1003–010 (1988).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    A. Nounou: A Fourth Way to the Aharonov-Bohm Effect. In: K. Brading, E. Castellani, editors. Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003).Google Scholar
  24. 24.
    M. Redhead: The Interpretation of Gauge Symmetry. In: M. Kuhlmann, H. Lyre, A. Wayne, editors. Ontological Aspects of Quantum Field Theory. World Scientific, Singapore (2002).Google Scholar
  25. 25.
    P. Teller: The Gauge Argument. Philosophy of Science. 67 (3), Suppl.: S466–S481 (2000).CrossRefMathSciNetGoogle Scholar
  26. 26.
    R. Utiyama: Invariant Theoretical Interpretation of Interaction. Physical Review. 101 (5): 1597–1607 (1956).MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    T. T. Wu, C. N. Yang: Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields. Physical Review. D 12 (12): 3845–857 (1975).ADSMathSciNetGoogle Scholar
  28. 28.
    C. N. Yang: Integral Formalism for Gauge Fields. Physical Review Letters. 33 (7): 445–447 (1974).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    H. Weyl: Gravitation und Elektrizität. Sitzungsberichte der Preuβischen Akademie der Wissenschaften. p. 465–480 (1918).Google Scholar

Secondary Literature

  1. 30.
    T.-P. Cheng, L.-F. Li: Gauge Theory of Elementary Particle Physics: Problems and Solutions. Oxford University Press, New York (2000).Google Scholar
  2. 31.
    M. Göckeler, T. Schücker: Differential Geometry, Gauge Theories and Gravity. Cambridge University Press, Cambridge (1987).Google Scholar
  3. 32.
    R. Gambini, J. Pullin: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (1996).MATHCrossRefGoogle Scholar
  4. 33.
    M. Henneaux, C. Teitelboim: Quantization of Gauge Systems. Princeton University Press, Princeton (1992).MATHGoogle Scholar
  5. 34.
    M. Nakahara: Geometry, Topology and Physics. IOP Publishing, Bristol (1990).MATHCrossRefGoogle Scholar
  6. 35.
    L. H. Ryder: Quantum Field Theory. Cambridge University Press, Cambridge (1985, 21996).MATHGoogle Scholar
  7. 36.
    T. Y. Cao: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge (1997).MATHCrossRefGoogle Scholar
  8. 37.
    L. O'Raifeartaigh: The Dawning of Gauge Theory. Princeton University Press, Princeton (1995).Google Scholar
  9. 38.
    L. O'Raifeartaigh, N. Straumann: Gauge Theory: Historical Origins and Some Modern Developments. Reviews of Modern Physics. 72 (1): 1–23 (2000).CrossRefADSMathSciNetGoogle Scholar
  10. 39.
    J. C. Taylor: Gauge Theories in the Twentieth Century. World Scientific, Singapore (2001).MATHCrossRefGoogle Scholar
  11. 40.
    V. P. Vizgin: Unified Field Theories. Birkhäuser, Basel (1994).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Holger Lyre
    • 1
  1. 1.Philosophy DepartmentUniversity of BielefeldGermany

Personalised recommendations