Skip to main content

Entanglement Purification and Distillation

  • Chapter
  • First Online:
Compendium of Quantum Physics

In quantum mechanics, subsystems of a composite system can exhibit correlations (► correlations in quantum mechanics) that are stronger than any classical correlations. Quantum correlations are also called entanglement [1]. A mixed quantum state ? consisting of two subsystems (i.e. a bipartite state) can be either separable or entangled. It is separable [2] if ϱ = Σi p i | a i⟩ ⟨a i | ⊗ | b i⟩⟨b i |, with p i being probabilities, and entangled otherwise. Entanglement can be quantified via entanglement measures. Maximally entangled states are pure, and mixing generally decreases entanglement. For further reading on entanglement, see [18–20] and general textbooks on quantum information, e.g. [21–23].

In quantum information entanglement is viewed as a resource, see protocols such as quantum teleportation [3], superdense coding [4] or entanglement-based quantum cryptography (► quantum communication) [5]. Therefore, one is interested in maximally entangled (pure) quantum states. In a realistic scenario, noise due to interaction with the environment (► decoherence) or imperfect gate operations generally reduces both purity and entanglement of a given state. However, if one has several copies of some less than maximally entangled state available, it is possible that the two parties Alice (A) and Bob (B) concentrate or distill the entanglement, by acting locally on their parts of the states (in their corresponding laboratories) and exchanging classical information via a telephone. Thus, by using so-called local operations and classical communication (LOCC) they can create fewer pairs with higher entanglement and higher degree of purity. This process is called entanglement purification or entanglement distillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. E. Schrödinger: Naturwissenschaften 23, 807 (1935).

    Article  ADS  Google Scholar 

  2. R. Werner: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).

    Article  ADS  Google Scholar 

  3. C. Bennett et al: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Bennett, S. Wiesner: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Ekert: Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  6. N. Gisin: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  7. C. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, W. Wootters: Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels. Phys. Rev. Lett. 76, 722 (1996).

    Article  ADS  Google Scholar 

  8. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera: Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. Phys. Rev. Lett. 77, 2818 (1996).

    Article  ADS  Google Scholar 

  9. M. Horodecki, P. Horodecki, R. Horodecki: Inseparable Two Spin-1/2 Density Matrices Can Be Distilled to a Singlet Form. Phys. Rev. Lett. 78, 574 (1997).

    Article  ADS  Google Scholar 

  10. A. Peres: Separability Criterion for Density Matrices. Phys. Rev. Lett. 77, 1413 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Horodecki, P. Horodecki, R. Horodecki: Separability of Mixed States: Necessary and Sufficient Conditions. Phys. Lett. A 223, 1 (1996).

    Article  MathSciNet  Google Scholar 

  12. P. Horodecki: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997).

    Article  MathSciNet  Google Scholar 

  13. M. Horodecki, P. Horodecki, R. Horodecki: Mixed-State Entanglement and Distillation: Is there a Bound Entanglement in Nature? Phys. Rev. Lett. 80, 5239 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  14. W. Dür, J.I. Cirac, M. Lewenstein, D. Bruß: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000).

    Article  MathSciNet  Google Scholar 

  15. D. DiVincenzo, P. Shor, J. Smolin, B. Terhal, A. Thapliyal: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000).

    Article  MathSciNet  Google Scholar 

  16. J. Watrous: Many Copies May Be Required for Entanglement Distillation. Phys. Rev. Lett. 93, 010502 (2004).

    Article  ADS  Google Scholar 

  17. Z.-W. Wang et al: Experimental Entanglement Distillation of Two-Qubit Mixed States under Local Operations, Phys. Rev. Lett. 96, 220505 (2006).

    Article  ADS  Google Scholar 

Secondary Literature

  1. M. Lewenstein, D. Bruß, J. I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera, R. Tarrach: Separability and distillability in composite quantum systems — a primer. Journ. Mod. Opt. 47, 2841 (2000).

    Article  MathSciNet  Google Scholar 

  2. D. Bruß: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki: Quantum entanglement. arXiv: quant-ph/0702225, subm. to Rev. Mod. Phys.

    Google Scholar 

  4. M. Nielsen, I. Chuang: Quantum Computation and Information. Cambridge University Press (2000).

    Google Scholar 

  5. Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer Tracts in Modern Physics, 173). Eds. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger, Springer-Verlag (April 2001).

    Google Scholar 

  6. Lectures on Quantum Information. Eds. D. Bruß G. Leuchs: WILEY-VCH Weinheim (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruß, D. (2009). Entanglement Purification and Distillation. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics