The discovery of the electron was a complex and extended process, stretching from Faraday's investigation of electrolysis to Millikan's oil-drop experiments [18]. The results of four different fields (electrochemistry, electromagnetic theory, ► spectroscopy, and ► cathode rays) converged to support the existence of a novel subatomic constituent of matter. Faraday's experiments on electrolysis, interpreted from the perspective of the atomic theory of matter, implied that electricity has an atomic structure [4]. That is, electricity appears in naturally occurring units. In 1891 George Johnstone Stoney (1826–1911) named those units “electrons” ([13], p. 583, [30]).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Primary Literature
H. Becquerel, Contribution à l'ètude du rayonnement du radium, Comptes Rendus 130, 206–211 (1900).
L. de Broglie, Quanta de lumière, diffraction et interférences, Comptes Rendus 177, 548–550 (1923).
C. J. Davisson and L. Germer, Diffraction of electrons by a crystal of nickel, Physical Review 30, 705–740 (1927).
H. Helmholtz, On the modern development of Faraday's conception of electricity, Journal of the Chemical Society 39, 277–304 (1881).
W. Kaufmann, Über die Konstitution des Elektrons, Annalen der Physik 19, 487–553 (1906).
J. Larmor, A dynamical theory of the electric and luminiferous medium, Philosophical Transactions of the Royal Society of London A 185, 719–822 (1895).
H. A. Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in be-wegten Körpern (Leiden: E. J. Brill, 1895).
H. A. Lorentz, The Theory of Electrons (New York: The Columbia University Press, 1909).
R. Millikan, On the elementary electrical charge and the Avogadro constant, Physical Review 2, 109–143 (1913).
R. A. Millikan, The electron and the light-quant from the experimental point of view, Nobel Lecture, May 23, 1924, in Nobel Lectures: Physics, 1922–1941 (Amsterdam: Elsevier, 1965), pp. 54–66.
R. A. Millikan, The Electron: Its Isolation and Measurement and the Determination of some of its Properties (Chicago: The University of Chicago Press, 2nd ed., 1924; 1st ed., 1917).
A. Sommerfeld, Atomic Structure and Spectral Lines (London: Methuen, 3rd rev. ed., 1934).
G. J. Stoney, On the Cause of Double Lines and of Equidistant Satellites in the Spectra of Gases, The Scientific Transactions of the Royal Dublin Society (2nd ser.) 4, 563–608 (1888–1892).
G. P. Thomson, Experiments on the diffraction of cathode rays, Proceedings of the Royal Society 117A, 600–609 (1928). This article was published in February 1928.
J. J. Thomson, Cathode Rays, Philosophical Magazine (5th ser.) 44, 293–316 (1897).
J. J. Thomson, On the Masses of the Ions in Gases at Low Pressures, Philosophical Magazine (5th ser.) 48, 547–567 (1899).
P. Zeeman, Doublets and Triplets in the Spectrum produced by External Magnetic Forces, Philosophical Magazine (5th ser.) 44, 55–60, 255–259 (1897).
Secondary Literature
T. Arabatzis, Representing Electrons: A Biographical Approach to Theoretical Entities (Chicago: The University of Chicago Press, 2006).
J. Z. Buchwald and A. Warwick (eds.), Histories of the Electron: The Birth of Microphysics (Cambridge, MA: MIT, 2001).
J. T. Cushing, Electromagnetic Mass, Relativity, and the Kaufmann Experiments, American Journal of Physics 49, 1133–1149 (1981).
S. Goldberg, The Abraham Theory of the Electron: The Symbiosis of Experiment and Theory, Archive for History of Exact Sciences 7, 7–25 (1970).
J. L. Heilbron, Historical Studies in the Theory of Atomic Structure (New York: Arno Press, 1981).
G. Holton, Subelectrons, Presuppositions and the Millikan-Ehrenhaft Dispute, in Holton, Scientific Imagination: Case Studies (Cambridge: Cambridge University Press, 1978), pp. 25–83.
G. Hon, Is the Identification of Experimental Error Contextually Dependent? The Case of Kaufmann's Experiment and Its Varied Reception, in J. Z. Buchwald (ed.), Scientific Practice: Theories and Stories of Doing Physics (Chicago: The University of Chicago Press, 1995), pp. 170–223.
M. Janssen and M. Mecklenburg, From Classical to Relativistic Mechanics: Electromagnetic Models of the Electron, in V. F. Hendricks, K. F. Jørgensen, J. Lützen and S.A. Pedersen (eds.), Interactions: Mathematics, Physics and Philosophy, 1860–1930 (Dordrecht: Springer, 2006), pp. 65–134.
A. I. Miller, Albert Einstein's Special Theory of Relativity, Emergence (1905) and Early Interpretation (1905–1911) (New York: Springer, 1998).
M. Morrison, Spin: All is not What it Seems, Studies in History and Philosophy of Modern Physics 38, 529–557 (2007).
A. Russo, Fundamental Research at Bell Laboratories: The Discovery of Electron Diffraction, Historical Studies in the Physical Sciences 12, 117–160 (1981).
B. R. Wheaton, The Tiger and the Shark: Empirical Roots of Wave-Particle Dualism (Cambridge: Cambridge University Press, 1983).
J. G. O'Hara: George Johnstone Stoney, F.R.S., and the Concept of the Electron, Notes and Records of the Royal Society of London 29 (2), 265–276 (1975).
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Arabatzis, T. (2009). Electrons. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-70626-7_62
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70622-9
Online ISBN: 978-3-540-70626-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)