Skip to main content

Electrons

  • Chapter
  • First Online:
Compendium of Quantum Physics

The discovery of the electron was a complex and extended process, stretching from Faraday's investigation of electrolysis to Millikan's oil-drop experiments [18]. The results of four different fields (electrochemistry, electromagnetic theory, ► spectroscopy, and ► cathode rays) converged to support the existence of a novel subatomic constituent of matter. Faraday's experiments on electrolysis, interpreted from the perspective of the atomic theory of matter, implied that electricity has an atomic structure [4]. That is, electricity appears in naturally occurring units. In 1891 George Johnstone Stoney (1826–1911) named those units “electrons” ([13], p. 583, [30]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Primary Literature

  1. H. Becquerel, Contribution à l'ètude du rayonnement du radium, Comptes Rendus 130, 206–211 (1900).

    Google Scholar 

  2. L. de Broglie, Quanta de lumière, diffraction et interférences, Comptes Rendus 177, 548–550 (1923).

    Google Scholar 

  3. C. J. Davisson and L. Germer, Diffraction of electrons by a crystal of nickel, Physical Review 30, 705–740 (1927).

    Article  ADS  Google Scholar 

  4. H. Helmholtz, On the modern development of Faraday's conception of electricity, Journal of the Chemical Society 39, 277–304 (1881).

    Article  Google Scholar 

  5. W. Kaufmann, Über die Konstitution des Elektrons, Annalen der Physik 19, 487–553 (1906).

    Article  ADS  Google Scholar 

  6. J. Larmor, A dynamical theory of the electric and luminiferous medium, Philosophical Transactions of the Royal Society of London A 185, 719–822 (1895).

    ADS  Google Scholar 

  7. H. A. Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in be-wegten Körpern (Leiden: E. J. Brill, 1895).

    Google Scholar 

  8. H. A. Lorentz, The Theory of Electrons (New York: The Columbia University Press, 1909).

    Google Scholar 

  9. R. Millikan, On the elementary electrical charge and the Avogadro constant, Physical Review 2, 109–143 (1913).

    Article  ADS  Google Scholar 

  10. R. A. Millikan, The electron and the light-quant from the experimental point of view, Nobel Lecture, May 23, 1924, in Nobel Lectures: Physics, 1922–1941 (Amsterdam: Elsevier, 1965), pp. 54–66.

    Google Scholar 

  11. R. A. Millikan, The Electron: Its Isolation and Measurement and the Determination of some of its Properties (Chicago: The University of Chicago Press, 2nd ed., 1924; 1st ed., 1917).

    Google Scholar 

  12. A. Sommerfeld, Atomic Structure and Spectral Lines (London: Methuen, 3rd rev. ed., 1934).

    Google Scholar 

  13. G. J. Stoney, On the Cause of Double Lines and of Equidistant Satellites in the Spectra of Gases, The Scientific Transactions of the Royal Dublin Society (2nd ser.) 4, 563–608 (1888–1892).

    Google Scholar 

  14. G. P. Thomson, Experiments on the diffraction of cathode rays, Proceedings of the Royal Society 117A, 600–609 (1928). This article was published in February 1928.

    ADS  Google Scholar 

  15. J. J. Thomson, Cathode Rays, Philosophical Magazine (5th ser.) 44, 293–316 (1897).

    Google Scholar 

  16. J. J. Thomson, On the Masses of the Ions in Gases at Low Pressures, Philosophical Magazine (5th ser.) 48, 547–567 (1899).

    Google Scholar 

  17. P. Zeeman, Doublets and Triplets in the Spectrum produced by External Magnetic Forces, Philosophical Magazine (5th ser.) 44, 55–60, 255–259 (1897).

    Google Scholar 

Secondary Literature

  1. T. Arabatzis, Representing Electrons: A Biographical Approach to Theoretical Entities (Chicago: The University of Chicago Press, 2006).

    Google Scholar 

  2. J. Z. Buchwald and A. Warwick (eds.), Histories of the Electron: The Birth of Microphysics (Cambridge, MA: MIT, 2001).

    Google Scholar 

  3. J. T. Cushing, Electromagnetic Mass, Relativity, and the Kaufmann Experiments, American Journal of Physics 49, 1133–1149 (1981).

    Article  ADS  Google Scholar 

  4. S. Goldberg, The Abraham Theory of the Electron: The Symbiosis of Experiment and Theory, Archive for History of Exact Sciences 7, 7–25 (1970).

    Article  MathSciNet  Google Scholar 

  5. J. L. Heilbron, Historical Studies in the Theory of Atomic Structure (New York: Arno Press, 1981).

    Google Scholar 

  6. G. Holton, Subelectrons, Presuppositions and the Millikan-Ehrenhaft Dispute, in Holton, Scientific Imagination: Case Studies (Cambridge: Cambridge University Press, 1978), pp. 25–83.

    Google Scholar 

  7. G. Hon, Is the Identification of Experimental Error Contextually Dependent? The Case of Kaufmann's Experiment and Its Varied Reception, in J. Z. Buchwald (ed.), Scientific Practice: Theories and Stories of Doing Physics (Chicago: The University of Chicago Press, 1995), pp. 170–223.

    Google Scholar 

  8. M. Janssen and M. Mecklenburg, From Classical to Relativistic Mechanics: Electromagnetic Models of the Electron, in V. F. Hendricks, K. F. Jørgensen, J. Lützen and S.A. Pedersen (eds.), Interactions: Mathematics, Physics and Philosophy, 1860–1930 (Dordrecht: Springer, 2006), pp. 65–134.

    Chapter  Google Scholar 

  9. A. I. Miller, Albert Einstein's Special Theory of Relativity, Emergence (1905) and Early Interpretation (1905–1911) (New York: Springer, 1998).

    Book  Google Scholar 

  10. M. Morrison, Spin: All is not What it Seems, Studies in History and Philosophy of Modern Physics 38, 529–557 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Russo, Fundamental Research at Bell Laboratories: The Discovery of Electron Diffraction, Historical Studies in the Physical Sciences 12, 117–160 (1981).

    Article  Google Scholar 

  12. B. R. Wheaton, The Tiger and the Shark: Empirical Roots of Wave-Particle Dualism (Cambridge: Cambridge University Press, 1983).

    Book  Google Scholar 

  13. J. G. O'Hara: George Johnstone Stoney, F.R.S., and the Concept of the Electron, Notes and Records of the Royal Society of London 29 (2), 265–276 (1975).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arabatzis, T. (2009). Electrons. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics