Skip to main content

Creation and Detection of Entanglement

  • Chapter
  • First Online:
Compendium of Quantum Physics
  • 347 Accesses

The fundamental equation of non-relativistic quantum mechanics, the ► Schrödinger equation, is linear. Thus, superpositions of its solutions (quantum states) constitute solutions as well. This is the famous ► superposition principle. Given a composite quantum system, i.e. a quantum system that consists of two or more subsystems, superpositions of its states can be either separable or entangled [1]. The quantum state of a bipartite system, i.e. a system consisting of two subsystems A (located at Alice's lab) and B (located at Bob's lab), is an element of the tensored Hilbert space H = H AH B. A pure bipartite state | ψ⟩ ∈ H AH B is called separable if and only if | ψ⟩ = | a⟩ ⊗ | b⟩, where | a⟩ ∈ H A and | b⟩ ∈ H B. It is entangled otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. E. Schrödinger: Naturwissenschaften 23, 807 (1935).

    Article  ADS  Google Scholar 

  2. R. Werner: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).

    Article  ADS  Google Scholar 

  3. W. Dür, G. Vidal, J. I. Cirac, N. Linden, S. Popescu: Entanglement Capabilities of Nonlocal Hamiltonians, Phys. Rev. Lett. 87, 137901 (2001).

    Article  ADS  Google Scholar 

  4. D. Greenberger, M. Horne, A. Zeilinger: Bell's theorem, Quantum Theory and Conceptions of the Universe, ed. M. Kafatos, Kluwer, Dordrecht (1989).

    Google Scholar 

  5. W. Dür, G. Vidal, J. I. Cirac: Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Acïn, D. Bruß, M. Lewenstein, A. Sanpera: Classification of Mixed Three-Qubit States. Phys. Rev. Lett. 87, 040401 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Rauschenbeutel et al: Step-by-step engineered multiparticle entanglement. Science 288, 2024 (2000).

    Article  ADS  Google Scholar 

  8. J. Raimond, M. Brune, S. Haroche: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Bouwmeester et al: Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement. Phys. Rev. Lett. 82, 1345 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  10. J.-W. Pan et al: Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation. Phys. Rev. Lett. 86, 4435 (2001).

    Article  ADS  Google Scholar 

  11. Z. Zhao et al: Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation. Nature 430, 54 (2004).

    Article  ADS  Google Scholar 

  12. M. Eibl et al: Experimental Observation of Four-Photon Entanglement from Parametric Down-Conversion. Phys. Rev. Lett. 90, 200403 (2003).

    Article  ADS  Google Scholar 

  13. M. Eibl et al: Experimental Realization of a Three-Qubit Entangled W State. Phys. Rev. Lett. 92, 077901 (2004).

    Article  ADS  Google Scholar 

  14. I. Cirac, P. Zoller, Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091 (1995).

    Article  ADS  Google Scholar 

  15. C. Sackett et al: Experimental entanglement of four particles. Nature 404, 256 (2000).

    Article  ADS  Google Scholar 

  16. D. Leibfried et al: Creation of a six-atom “Schrodinger cat” state. Nature 438, 639 (2005).

    Article  ADS  Google Scholar 

  17. C. Roos et al: Control and measurement of three-qubit entangled states. Science 304, 1478 (2004).

    Article  ADS  Google Scholar 

  18. H. Häffner et al: Scalable multiparticle entanglement of trapped ions. Nature 438, 643 (2005).

    Article  ADS  Google Scholar 

  19. M. Horodecki: P. Horodecki, R. Horodecki, Separability of Mixed States: Necessary and Sufficient Conditions. Phys. Lett. A 223, 1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Terhal: Bell Inequalities and the Separability Criterion. Phys. Lett. A 271, 319 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Gühne et al: Detection of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002).

    Article  ADS  Google Scholar 

  22. M. Barbieri et al: Detection of Entanglement with Polarized Photons: Experimental Realization of an Entanglement Witness. Phys. Rev. Lett. 91, 227901 (2003).

    Article  ADS  Google Scholar 

  23. M. Bourennane et al: Experimental Detection of Multipartite Entanglement using Witness Operators. Phys. Rev. Lett. 92, 087902 (2004).

    Article  ADS  Google Scholar 

Secondary Literature

  1. M. Lewenstein, D. Bruß, J. I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera, R. Tarrach: Separability and distillability in composite quantum systems — a primer. J. Mod. Opt. 47, 2841 (2000).

    Article  MathSciNet  Google Scholar 

  2. D. Bruß: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki: Quantum entanglement. arXiv: quant-ph/0702225, subm. to Rev. Mod. Phys.

    Google Scholar 

  4. M. Nielsen, I. Chuang: Quantum Computation and Information. Cambridge University Press (2000).

    Google Scholar 

  5. Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer Tracts in Modern Physics, 173). Eds. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger. Springer-Verlag (April 2001).

    Google Scholar 

  6. Lectures on Quantum Information. Eds. D. Bruß, G. Leuchs. WILEY-VCH Weinheim (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bruβ, D. (2009). Creation and Detection of Entanglement. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics