Lüders Rule

  • Paul Busch
  • Pekka Lahti

Lüders measurements offer an important characterization of the compatibility of ►observables A,B with discrete spectra: A and B commute if and only if the expectation value of B is not changed by a nonselective Lüders operation of A in any state T [1]. This result is the basis for the axiom of local commutativity in relativistic quantum field theory: the mutual commutativity of observables from local algebras associated with two spacelike separated regions of spacetime ensures, and is necessitated by, the impossibility of influencing the outcomes of measurements in one region through nonselective measurements performed in the other region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. 1.
    G. Lüders: Über die Zustandsänderung durch den Meßprozeß, Annalen der Physik 8, 322–328 (1951), available on-line at English translation by K.A. Kirkpatrick: Concerning the state-change due to the measurement process, Ann. Phys. (Leipzig) 15, 663–670 (2006)zbMATHGoogle Scholar
  2. 2.
    J. von Neumann: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932, 2nd edn. 1996); English translation (by R. Beyer): Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton 1955)zbMATHGoogle Scholar
  3. 3.
    E. B. Davies: Quantum Theory of Open Systems (Academic, London 1976)zbMATHGoogle Scholar
  4. 4.
    A. M. Gleason: Measures on the Closed Subspaces of a Hilbert Space, Journal of Mathematics and Mechanics 6, 885–893 (1957)zbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Cassinelli, N. Zanghi: Conditional Probabilities in Quantum Mechanics. I. Conditioning with Respect to a Single Event, Il Nuovo Cimento 73, 237–245 (1983)CrossRefMathSciNetGoogle Scholar
  6. 6.
    K. Bugajska, S. Bugajski: The Projection Postulate in Quantum Logic, Bulletin de L'Academie Polonaise des Sciences, Ser. sci. math., astr. et phys. Bull. Acad. Pol. Sci., Serie des sc. math. astr. et phys. 21, 873–887 (1973)MathSciNetGoogle Scholar
  7. 7.
    P. Busch: Unsharp reality and joint measurements for spin observables, Physical Review D 33, 2253–2261 (1986)CrossRefADSMathSciNetGoogle Scholar

Secondary Literature

  1. 8.
    P. Busch, P. Lahti, P. Mittelstaedt: The Quantum Theory of Measurement (Springer, Berlin 1991, 2nd revised edn. 1996)Google Scholar
  2. 9.
    E. Beltrametti, G. Cassinelli: The Logic of Quantum Mechanics (Addison-Wesley, Reading, MA 1981)zbMATHGoogle Scholar
  3. 10.
    P. J. Lahti, S. Bugajski: Fundamental Principles of Quantum Theory. II. From a Convexity Scheme to the DHB Theory, International Journal of Theoretical Physics 24, 1051–1080 (1985)CrossRefADSMathSciNetGoogle Scholar
  4. 11.
    P. Busch, J. Singh: Lüders theorem for unsharp quantum measurements, Physics Letters A 249, 10–12 (1998)CrossRefADSGoogle Scholar
  5. 12.
    A, Aries, S. Gudder: Fixed points of quantum operations, Journal of Mathematical Physics 43, 5872–5881 (2002)CrossRefADSMathSciNetGoogle Scholar
  6. 13.
    M. B. Plenio, P.L. Knight: The quantum-jump approach to dissipative dynamics in quantum optics, Reviews of Modern Physics 70, 101–144 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paul Busch
  • Pekka Lahti

There are no affiliations available

Personalised recommendations