Skip to main content

Bayesian Phylogeny on Grid

  • Conference paper
Bioinformatics Research and Development (BIRD 2008)

Abstract

Grid computing defines the combination of computers or clusters of computers across networks, like the internet, to form a distributed supercomputer. This infrastructure allows scientists to process complex and time consuming computations in parallel on demand. Phylogenetic inference for large data sets of DNA/protein sequences is known to be computationally intensive and could greatly benefit from this parallel supercomputing approach. Bayesian algorithms allows the estimation of important parameters on species divergence modus and time but at the price of running repetitive long series of MonteCarlo simulations. As part of the BioinfoGrid project, we ported parallel MrBayes to the EGEE (Enabling Grids for E-sciencE) grid infrastructure. As case study we investigate both a challenging dataset of arthropod phylogeny and the most appropriate model of amino acid replacement for that data set. Our aim is to resolve the position of basal hexapod lineages with respect to Insecta and Crustacea. In this effort, a new matrix of protein change was derived from the dataset itself, and its performance compared with other currently used models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whelan, S., LiĆ³, P., Goldman, N.: Molecular phylogenetics: State-of-art methods for looking into the past. Trends Genet.Ā 17, 262ā€“272 (2001)

    ArticleĀ  Google ScholarĀ 

  2. LiĆ³, P., Goldman, N.: Models of molecular evolution and phylogeny. Genome Res.Ā 8, 1233ā€“1244 (1998)

    Google ScholarĀ 

  3. Carapelli, A., LiĆ³, P., Nardi, F., van der Wath, E., Frati, F.: Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evolutionary BiologyĀ 7 (2007), doi:10.1186/1471-2148-7-S2-S8

    Google ScholarĀ 

  4. Russo, C.A., Takezaki, N., Nei, M.: Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol. Biol. Evol.Ā 13, 933ā€“942 (1996)

    Google ScholarĀ 

  5. Zardoya, R., Meyer, A.: Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Molecular Biology and EvolutionĀ 13, 525ā€“536 (1996)

    Google ScholarĀ 

  6. Pollock, D.D., Eisen, J.A., Doggett, N.A., Cummings, M.P.: A case for the evolutionary genomics and the comprehensive examination of sequence biodiversity. Mol. Biol. Evol.Ā 17, 1776ā€“1778 (2000)

    Google ScholarĀ 

  7. Cao, Y., Janke, A., Waddell, P.J., Westerman, M., Takenaka, O., Murata, S., Okada, N., Paabo, S., Hasegawa, M.: Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J. Mol. Evol.Ā 47, 307ā€“322 (1998)

    ArticleĀ  Google ScholarĀ 

  8. LiĆ³, P.: Phylogenetic and structural analysis of mitochondrial complex I proteins. GeneĀ 345, 55ā€“64 (1999)

    ArticleĀ  Google ScholarĀ 

  9. Liu, J.S., Lawrence, C.E.: Bayesian inference on biopolymer models. BioinformaticsĀ 15, 38ā€“52 (1999)

    ArticleĀ  Google ScholarĀ 

  10. Shoemaker, J.S., Painter, I.S., Weir, B.: Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet.Ā 15, 354ā€“358 (1999)

    ArticleĀ  Google ScholarĀ 

  11. Larget, B., Simon, D.: Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. EĀ 16, 750ā€“759 (1999)

    Google ScholarĀ 

  12. Huelsenbeck, J.P., Ronquist, F.: MrBayes: Bayesian inference in phylogenetic trees. BioinformaticsĀ 17, 754ā€“755 (2001)

    ArticleĀ  Google ScholarĀ 

  13. Ronquist, F., Huelsenbeck., J.P.: MrBayes3: Bayesian phylogenetic inference under mixed models. BioinformaticsĀ 19, 1572ā€“1574 (2003)

    ArticleĀ  Google ScholarĀ 

  14. Rannala, B., Yang., Z.: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. GeneticsĀ 164, 1645ā€“1656 (2003)

    Google ScholarĀ 

  15. Mau, B., Newton, M.A., Larget, B.: Bayesian phylogenetic inference via Markov chain Monte Carlo methods. BiometricsĀ 55, 1ā€“12 (1999)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  16. Yang, Z., Rannala, B.: Bayesian phylogenetic inference using DNA sequences: Markov chain Monte Carlo methods. Mol. Biol. Evol.Ā 14, 717ā€“724 (1997)

    Google ScholarĀ 

  17. Altekar1, G., Dwarkadas1, S., Huelsenbeck, J.P., Ronquist3, F.: Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. BioinformaticsĀ 20, 407ā€“415 (2004)

    ArticleĀ  Google ScholarĀ 

  18. http://www.bioinfogrid.eu/

  19. http://public.eu-egee.org/

  20. Richter, S.: The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Divers Evol.Ā 2, 217ā€“237 (2002)

    ArticleĀ  Google ScholarĀ 

  21. Nardi, F., Spinsanti, G., Boore, J.L., Carapelli, A., Dallai, R., Frati, F.: Hexapod origins: monophyletic or polyphyletic? ScienceĀ 299, 1887ā€“1889 (2003)

    ArticleĀ  Google ScholarĀ 

  22. Cook, C.E., Yue, Q., Akam, M.: Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc. R Soc. Lond. BĀ 272, 1295ā€“1304 (2005)

    ArticleĀ  Google ScholarĀ 

  23. Abascal, F., Posada, D., Zardoya, R.: MtArt: a new model of amino acid replacement for Arthropoda. Mol. Biol. Evol.Ā 24, 1ā€“5 (2007)

    ArticleĀ  Google ScholarĀ 

  24. Yang, Z., Nielsen, R., Hasegawa: Models of amino acid substitutions and applications to mitochondrial protein evolution. Mol. Biol. Evol.Ā 15, 1600ā€“1611 (1998)

    Google ScholarĀ 

  25. http://trinity.datamat.it/projects/EGEE/wiki/

  26. http://public.eu-egee.org/industry/ifdocuments/glite-flyer.pdf

  27. Boore, J.: Animal mitochondrial genomes. Nucl. Acid Res.Ā 27, 1767ā€“1780 (1999)

    ArticleĀ  Google ScholarĀ 

  28. Cameron, S.L., Miller, K.B., DaHaese, C.A., Whiting, M.F., Barker, S.C.: Mitochondrial genome data alone are not enough to unambiguosly resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). CladisticsĀ 20, 534ā€“557 (2004)

    ArticleĀ  Google ScholarĀ 

  29. Hassanin, A., Lger, N., Deutsch, J.: Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syt. Biol.Ā 54, 277ā€“298 (2005)

    ArticleĀ  Google ScholarĀ 

  30. Chor, B., Hendy, M.D., Holland, B.R., Penny, D.: Multiple maxima of likelihood in phylogenetic trees: an analytic approach. In: RECOMB 2000, pp. 108ā€“117 (2000)

    Google ScholarĀ 

  31. Mossel, E., Vigoda, E.: Limitations of Markov chain Monte Carlo algorithms for Bayesian Inference of phylogeny. Ann. Appl. Probab.Ā 16, 2215ā€“2234 (2006)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  32. Chor, B., Tuller, T.: Finding a maximum likelihood tree is hard. J. ACMĀ 53, 722ā€“744 (2006)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  33. Gascuel, O.: Mathematics of Evolution and Phylogeny. Oxford University Press, USA (2007)

    Google ScholarĀ 

  34. Yang, Z.: Computational Molecular Evolution (Oxford Series in Ecology and Evolution). Oxford University Press, USA (2006)

    Google ScholarĀ 

  35. Felsenstein, J.: Inferring Phylogenies Sinauer Associates, 2nd edn (2003)

    Google ScholarĀ 

  36. Nielsen, R.: Statistical Methods in Molecular Evolution (Statistics for Biology and Health), 1st edn. Springer, Heidelberg (2005)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mourad Elloumi Josef KĆ¼ng Michal Linial Robert F. Murphy Kristan Schneider Cristian Toma

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Wath, R.C. et al. (2008). Bayesian Phylogeny on Grid. In: Elloumi, M., KĆ¼ng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70600-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70598-7

  • Online ISBN: 978-3-540-70600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics