Skip to main content

Placement Inference for a Client-Server Calculus

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5126))

Included in the following conference series:

Abstract

Placement inference assigns locations to operations in a distributed program under the constraints that some operations can only execute on particular locations and that values may not be transferred arbitrarily between locations. An optimal choice of locations additionally minimizes the run time of the program, given that operations take different time on different locations and that a cost is associated to transferring a value from one location to another.

We define a language with a time- and location-aware semantics, formalize placement inference in terms of constraints, and show that solving these constraints is an NP-complete problem. We then show that optimal placements are computable via a reformulation of the semantics in terms of matrices and an application of the max-plus spectral theory. A prototype implementation validates our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiken, A., Wimmers, E.L.: Solving systems of set constraints. In: Proc. 1992 IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Apt, K.R.: Explaining constraint programming. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R.C. (eds.) Processes, Terms and Cycles. LNCS, vol. 3838, pp. 55–69. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, New York (1999)

    MATH  Google Scholar 

  5. Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch.8, vol. I, pp. 445–534. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  6. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity, An Algebra for Discrete Event Systems. John Wiley and Sons, Chichester (1992)

    MATH  Google Scholar 

  7. Buchholz, P., Kemper, P.: Weak bisimulation for (max/+) automata and related models. Journal of Automata, Languages and Combinatorics 8(2), 187–218 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Chen, L.: Timed Processes: Models, Axioms and Decidabilty. PhD thesis, University of Edinburgh (1992)

    Google Scholar 

  9. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without tiers. In: Post-proceedings of FMCO 2006. LNCS, vol. 4709. Springer, Heidelberg (2006)

    Google Scholar 

  10. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints. Artificial Intelligence 65(2), 347–361 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dasdan, A.: Experimental analysis of the fastest optimum cycle ratio and mean algorithms. ACM Transactions on Design Automation of Electronic Systems 9(4), 385–418 (2004)

    Article  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  13. Gaubert, S.: Performance evaluation of (max,+) automata. IEEE Transactions On Automatic Control 40(12) (December 1995)

    Google Scholar 

  14. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  15. Kuich, W., Salomaa, A.: Semirings, automata, languages. Springer, London (1986)

    MATH  Google Scholar 

  16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  17. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations for timing-based systems. In: de Bakker, J.W., Huizing, K., de Roever, W.P., Rozenberg, G. (eds.) Proceedings REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands, June 1991. LNCS, vol. 600, pp. 397–446. Springer, Berlin (1992)

    Chapter  Google Scholar 

  18. Marriott, K., Stuckey, P.J.: Programming with constraints: an introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Murphy VII, T., Crary, K., Harper, R.: Type-safe distributed programming with ML5. In: Trustworthy Global Computing 2007 pre-proceedings (November 2007)

    Google Scholar 

  20. Neubauer, M.: Multi-Tier Programming. PhD thesis, Universität Freiburg (April 2007), http://www.freidok.uni-freiburg.de/volltexte/3104/

  21. Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applications by program transformation. In: Abadi, M. (ed.) Proc. 32nd ACM Symp. POPL, Long Beach, CA, USA, January 2005, pp. 221–232. ACM Press, New York (2005)

    Google Scholar 

  22. Serrano, M., Gallesio, E., Loitsch, F.: HOP, a language for programming the Web 2.0. In: Proceedings of the First Dynamic Languages Symposium, Portland, OR, USA (October 2006)

    Google Scholar 

  23. Su, Z., Aiken, A., Niehren, J., Priesnitz, T., Treinen, R.: The first-order theory of subtyping constraints. In: Mitchell, J. (ed.) Proc. 29th ACM Symp. POPL, Portland, OR, USA, January 2002, pp. 203–216. ACM Press, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luca Aceto Ivan Damgård Leslie Ann Goldberg Magnús M. Halldórsson Anna Ingólfsdóttir Igor Walukiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neubauer, M., Thiemann, P. (2008). Placement Inference for a Client-Server Calculus. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70583-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70582-6

  • Online ISBN: 978-3-540-70583-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics