Skip to main content

Improved Garbled Circuit: Free XOR Gates and Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5126))

Abstract

We present a new garbled circuit construction for two-party secure function evaluation (SFE). In our one-round protocol, XOR gates are evaluated “for free”, which results in the corresponding improvement over the best garbled circuit implementations (e.g. Fairplay [19]).

We build permutation networks [26] and Universal Circuits (UC) [25] almost exclusively of XOR gates; this results in a factor of up to 4 improvement (in both computation and communication) of their SFE. We also improve integer addition and equality testing by factor of up to 2.

We rely on the Random Oracle (RO) assumption. Our constructions are proven secure in the semi-honest model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)

    Google Scholar 

  4. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 206–220. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc. 30th ACM Symp. on Theory of Computing, pp. 209–218 (1998)

    Google Scholar 

  6. Crescenzo, G.D.: Private selective payment protocols. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  8. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988)

    Google Scholar 

  10. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)

    Google Scholar 

  11. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. In: ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD 2002) (2002)

    Google Scholar 

  13. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM Symp. on Theory of Computing, Chicago, pp. 20–31. ACM, New York (1988)

    Google Scholar 

  14. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Financial Cryptography and Data Security, FC 2008. LNCS. Springer, Heidelberg (2008)

    Google Scholar 

  16. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Cryptology ePrint Archive, Report 2004/175 (2004)

    Google Scholar 

  18. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation system. In: USENIX (2004)

    Google Scholar 

  20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001)

    Google Scholar 

  21. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: 1st ACM Conf. on Electronic Commerce (1999)

    Google Scholar 

  22. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD Explor. Newsl. 4(2), 12–19 (2002)

    Article  Google Scholar 

  24. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC 1. In: Proc. 40th FOCS, New York, pp. 554–566. IEEE, Los Alamitos (1999)

    Google Scholar 

  25. Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8th ACM Symp. on Theory of Computing, pp. 196–203. ACM Press, New York (1976)

    Google Scholar 

  26. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)

    Article  Google Scholar 

  27. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foundations of Comp. Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)

    Google Scholar 

  28. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp. on Foundations of Comp. Science, Toronto, pp. 162–167. IEEE, Los Alamitos (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luca Aceto Ivan Damgård Leslie Ann Goldberg Magnús M. Halldórsson Anna Ingólfsdóttir Igor Walukiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolesnikov, V., Schneider, T. (2008). Improved Garbled Circuit: Free XOR Gates and Applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70583-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70582-6

  • Online ISBN: 978-3-540-70583-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics